Câu hỏi:

11/12/2025 15 Lưu

Một bài thi trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án trả lời trong đó có 1 phương án đúng. Biết rằng nếu trả lời đúng một câu hỏi thì thí sinh đó được 1 điểm, còn nếu trả lời sai thì thí sinh đó bị trừ 0,5 điểm. Giả sử rằng thí sinh phải bắt buộc trả lời đủ 10 câu hỏi, hãy tính xác suất để thí sinh đó được trên 5 điểm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(0,0035.\)

Lời giải

Gọi \(x \in \mathbb{N},x \le 10\) là số câu trả lời sai của thí sinh. Khi đó điểm số của thí sinh là \(10 - x - 0,5x\).

Để thí sinh đạt trên 5 điểm thì \(10 - x - 0,5x > 5 \Leftrightarrow \frac{{10}}{3} > x\). Tức là thí sinh đó trả lời sai ko quá 3 câu.

Xác suất để thí sinh trả lời sai 1 câu là 0,75.

Xác suất để học sinh trả lời sai không quá 3 câu là

\({(0,25)^{10}} + C_{10}^1{(0,25)^9} \cdot 0,75 + C_{10}^2{(0,25)^8} \cdot {0,75^2} + C_{10}^3{(0,25)^7}.{(0,75)^3} \approx 0,0035.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).               

Lời giải

wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).

Ta có \(y' =  - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) =  - 3x_0^2 + 6{x_0}\).

Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) =  - \frac{1}{k} =  - 9\).

Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\).

wNhư vậy

Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].

Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).

Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b + c} \right)\].

B. \[{\log _a}b + {\log _a}c = {\log _a}\left| {b - c} \right|\].

C. \[{\log _a}b + {\log _a}c = {\log _a}\left( {bc} \right)\].  
D. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b - c} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(f\left( {\frac{\pi }{2}} \right) =  - 1\).  

Đúng
Sai

b) \(f'\left( x \right) = \frac{{ - 2\sin 2x}}{{3.\sqrt[3]{{{{\cos }^2}2x}}}}\).  

Đúng
Sai

c) \(f'\left( {\frac{\pi }{2}} \right) = 1\). 

Đúng
Sai
d) \(3.{y^2}.y' + 2\sin 2x = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP