Câu hỏi:

12/12/2025 77 Lưu

Có 10 bạn học sinh trong đội tuyển học sinh giỏi môn Toán 12 của một trường phổ thông gồm 2 bạn đến từ lớp \(12\;A1,3\) bạn đến từ lớp \(12\;A2,5\) bạn còn lại đến từ các lớp khác nhau. Thầy giáo xếp ngẫu nhiên các bạn đó vào ngồi một bàn dài mà mỗi bên có 5 ghế đối diện nhau. Tính xác suất sao cho không có học sinh nào cùng lớp ngồi đối diện nhau.

A. \(\frac{{73}}{{126}}\). 

B. \(\frac{{53}}{{126}}\).  
C. \(\frac{5}{9}\).
D. \(\frac{{38}}{{63}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D.

Gọi các biến cố \(A\) : "Có học sinh cùng lớp ngồi đối diện nhau";

\(\bar A\) : "Không có học sinh cùng lớp ngồi đối diện nhau";

\({A_1}\) : "Có học sinh lớp 12A1 ngồi đối diện nhau";

\({A_2}\) : "Có học sinh lớp \(12\;A2\) ngồi đối diện nhau".

Khi đó \({A_1}{A_2}\) là biến cố: "Học sinh \(12\;A1\) ngồi đối diện nhau và học sinh \(12\;A2\) ngồi đối diện nhau".

Ta có: \(P\left( {{A_1}} \right) = \frac{{5 \cdot 2 \cdot 8!}}{{10!}} = \frac{1}{9};P\left( {{A_2}} \right) = \frac{{5A_3^2 \cdot 8!}}{{10!}} = \frac{1}{3};P\left( {{A_1}{A_2}} \right) = \frac{{5 \cdot 2 \cdot 4 \cdot A_3^2 \cdot 6!}}{{10!}} = \frac{1}{{21}}\).

Suy ra: \(P(A) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) - P\left( {{A_1}{A_2}} \right) = \frac{1}{9} + \frac{1}{3} - \frac{1}{{21}} = \frac{{25}}{{63}}\).

Vậy xác suất để xếp được hàng mà không có học sinh cùng lớp nào ngồi đối diện nhau là:

\(P(\bar A) = 1 - P(A) = 1 - \frac{{25}}{{63}} = \frac{{38}}{{63}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{33}}{{40}}\)

Lời giải

Xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán: \(\frac{{25 + 20 - 12}}{{40}} = \frac{{33}}{{40}}\).

Lời giải

Trả lời: \( \approx {64,3^0}\)
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

Câu 3

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Gọi biến cố \(A\) là "Số chấm xuất hiện trên xúc xắc là số lẻ" và biến cố \(B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai lớn hơn 3 ".

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai
d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP