Câu hỏi:

12/12/2025 6 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a,\widehat {BAD} = 120,SA \bot (ABCD)\) và \(SA = \sqrt 3 a\). Tính góc giữa đường thẳng \(SC\) và mặt phẳng \((SAD)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Trả lời: \( \approx {64,3^0}\)
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Gọi biến cố \(A\) là "Số chấm xuất hiện trên xúc xắc là số lẻ" và biến cố \(B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai lớn hơn 3 ".

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai
d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)
Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

a) Biến cố \(\bar A\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn".

Biến cố \(\bar B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai nhỏ hơn hoặc bằng 3 ".

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}\).

c) \(P(\bar B) = \frac{{n(\bar B)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}.\)

d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{9}{{36}} = \frac{1}{4}.\)

Lời giải

Chọn C.

Gọi \(n\) (\(n\) là số nguyên dương) là số trận An chơi. Gọi \(A\) là biến cố “An thắng ít nhất 1 trận trong loạt chơi \(n\) trận". Suy ra \(\bar A\) là biến cố: "An thua tất cả \(n\) trận".

Ta có: \(P(A) = 1 - P(\bar A) = 1 - {(0,6)^n}\).

Theo giả thiết:

\(P(A) > 0,95 \Leftrightarrow 1 - {(0,6)^n} > 0,95 \Rightarrow {(0,6)^n} < 0,05 \Rightarrow n > {\log _{0,6}}0,05 \approx 5,86.{\rm{ }}\)

Số nguyên dương \(n\) nhỏ nhất thoả mãn là 6 (An chơi tối thiểu 6 trận).

Câu 4

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Khi tung một đồng xu không cân đối thì người ta thấy rằng xác suất để đồng xu xuất hiện mặt sấp bằng \(\frac{2}{3}\). Tung đồng xu này ba lần liên tiếp. Tính xác suất để xuất hiện ít nhất 1 lần mặt ngửa.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{a\sqrt 6 }}{3}\). 

B. \(\frac{{a\sqrt 3 }}{3}\).     
C. \(\frac{{a\sqrt 8 }}{3}\). 
D. \(\frac{{a\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP