Câu hỏi:

12/12/2025 15 Lưu

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Gọi biến cố \(A\) là "Số chấm xuất hiện trên xúc xắc là số lẻ" và biến cố \(B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai lớn hơn 3 ".

a) Biến cố xung khắc với biến cố \(A\) là biến cố \(\bar A\) được phát biểu như sau: "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn"

Đúng
Sai

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{1}{2}\)

Đúng
Sai

c) \(P(\bar B) = P\left( {\overline A } \right)\)

Đúng
Sai
d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{1}{3}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Đúng

d) Sai

a) Biến cố \(\bar A\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ nhất là số chẵn".

Biến cố \(\bar B\) là "Số chấm xuất hiện trên xúc xắc ở lần thứ hai nhỏ hơn hoặc bằng 3 ".

b) \(P(\bar A) = \frac{{n(\bar A)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}\).

c) \(P(\bar B) = \frac{{n(\bar B)}}{{n(\Omega )}} = \frac{{18}}{{36}} = \frac{1}{2}.\)

d) \(P(\overline {AB} ) = \frac{{n(\overline {AB} )}}{{n(\Omega )}} = \frac{9}{{36}} = \frac{1}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C.

Gọi \(n\) (\(n\) là số nguyên dương) là số trận An chơi. Gọi \(A\) là biến cố “An thắng ít nhất 1 trận trong loạt chơi \(n\) trận". Suy ra \(\bar A\) là biến cố: "An thua tất cả \(n\) trận".

Ta có: \(P(A) = 1 - P(\bar A) = 1 - {(0,6)^n}\).

Theo giả thiết:

\(P(A) > 0,95 \Leftrightarrow 1 - {(0,6)^n} > 0,95 \Rightarrow {(0,6)^n} < 0,05 \Rightarrow n > {\log _{0,6}}0,05 \approx 5,86.{\rm{ }}\)

Số nguyên dương \(n\) nhỏ nhất thoả mãn là 6 (An chơi tối thiểu 6 trận).

Lời giải

Chọn D.

Gọi các biến cố \(A\) : "Có học sinh cùng lớp ngồi đối diện nhau";

\(\bar A\) : "Không có học sinh cùng lớp ngồi đối diện nhau";

\({A_1}\) : "Có học sinh lớp 12A1 ngồi đối diện nhau";

\({A_2}\) : "Có học sinh lớp \(12\;A2\) ngồi đối diện nhau".

Khi đó \({A_1}{A_2}\) là biến cố: "Học sinh \(12\;A1\) ngồi đối diện nhau và học sinh \(12\;A2\) ngồi đối diện nhau".

Ta có: \(P\left( {{A_1}} \right) = \frac{{5 \cdot 2 \cdot 8!}}{{10!}} = \frac{1}{9};P\left( {{A_2}} \right) = \frac{{5A_3^2 \cdot 8!}}{{10!}} = \frac{1}{3};P\left( {{A_1}{A_2}} \right) = \frac{{5 \cdot 2 \cdot 4 \cdot A_3^2 \cdot 6!}}{{10!}} = \frac{1}{{21}}\).

Suy ra: \(P(A) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) - P\left( {{A_1}{A_2}} \right) = \frac{1}{9} + \frac{1}{3} - \frac{1}{{21}} = \frac{{25}}{{63}}\).

Vậy xác suất để xếp được hàng mà không có học sinh cùng lớp nào ngồi đối diện nhau là:

\(P(\bar A) = 1 - P(A) = 1 - \frac{{25}}{{63}} = \frac{{38}}{{63}}\)

Câu 3

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Khi tung một đồng xu không cân đối thì người ta thấy rằng xác suất để đồng xu xuất hiện mặt sấp bằng \(\frac{2}{3}\). Tung đồng xu này ba lần liên tiếp. Tính xác suất để xuất hiện ít nhất 1 lần mặt ngửa.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{a\sqrt 6 }}{3}\). 

B. \(\frac{{a\sqrt 3 }}{3}\).     
C. \(\frac{{a\sqrt 8 }}{3}\). 
D. \(\frac{{a\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP