Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng \(8,2\;cm\) và đáy của nó có hai kích thước là \(8,5\;cm;10,5\;cm\) (xem hình vẽ sau). Tìm góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\) (tính theo độ, làm tròn kết quả đến hàng phần chục).
Một hộp phấn không bụi có dạng hình hộp chữ nhật, chiều cao hộp phấn bằng \(8,2\;cm\) và đáy của nó có hai kích thước là \(8,5\;cm;10,5\;cm\) (xem hình vẽ sau). Tìm góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\) (tính theo độ, làm tròn kết quả đến hàng phần chục).

Quảng cáo
Trả lời:
Trả lời: \( \approx {51,14^^\circ }\)
Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)\), kẻ \({A^\prime }H \bot {B^\prime }{D^\prime }\) tại \(H\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{B^\prime }{D^\prime } \bot {A^\prime }H}\\{{B^\prime }{D^\prime } \bot A{A^\prime }\left( {{\rm{do }}A{A^\prime } \bot \left( {{A^\prime }{B^\prime }{C^\prime }{D^\prime }} \right)} \right)}\end{array} \Rightarrow {B^\prime }{D^\prime } \bot \left( {A{A^\prime }H} \right) \Rightarrow {B^\prime }{D^\prime } \bot AH} \right.\).
Do đó \(\widehat {AH{A^\prime }}\) là góc phẳng nhị diện \(\left[ {A,{B^\prime }{D^\prime },{A^\prime }} \right]\).
Tam giác \({A^\prime }{B^\prime }{D^\prime }\) vuông tại \({A^\prime }\) có đường cao \({A^\prime }H\) nên
\(\frac{1}{{{A^\prime }{H^2}}} = \frac{1}{{{A^\prime }{B^{\prime 2}}}} + \frac{1}{{{A^\prime }{D^{\prime 2}}}} \Rightarrow {A^\prime }H = \frac{{{A^\prime }{B^\prime } \cdot {A^\prime }{D^\prime }}}{{\sqrt {{A^\prime }{B^{\prime 2}} + {A^\prime }{D^{\prime 2}}} }} = \frac{{357}}{{2\sqrt {730} }}{\rm{. }}\)
Tam giác \(AH{A^\prime }\) vuông tại \({A^\prime }\) có:
\(\tan \widehat {AH{A^\prime }} = \frac{{A{A^\prime }}}{{{A^\prime }H}} = \frac{{8,2}}{{\frac{{357}}{{2\sqrt {730} }}}} \Rightarrow \widehat {AH{A^\prime }} \approx {51,14^^\circ }\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
Lời giải
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.
*) Lấy đối xứng đồ thị hàm số \[y = - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\] là hàm đồng biến, nên \[\,b > 1\].
*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.
Do đó:
\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.
\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.
\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.
\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.
Câu 2
a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y = - 3x + 6\]
b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]
c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Hàm số đã cho xác định \[D = \mathbb{R}\]
Ta có: \[y' = 3{x^2} + 6x\]
a) Phương trình tiếp tuyến \[\left( t \right)\]tại \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] có phương trình : \[y = y'\left( { - 1} \right)\left( {x + 1} \right) + 3\]
Ta có: \[y'\left( { - 1} \right) = - 3\], khi đó phương trình \[\left( t \right)\] là: \[y = - 3x + 6\]
b) Thay \[x = 2\] vào đồ thị của (C) ta được \[y = 21\].
phương trình \[\left( t \right)\] là: \[y = 24x - 27\]
c) Thay \[y = 1\] vào đồ thị của (C) ta được \[{x^2}\left( {x + 3} \right) = 0 \Leftrightarrow x = 0\] hoặc \[x = - 3\].
phương trình \[\left( t \right)\] là: \[y = 1\], \[y = 9x + 28\]
d) Trục tung Oy : \[x = 0 \Rightarrow y = 1\]. phương trình \[\left( t \right)\] là: \[y = 1\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(D = \left( {0;\,4} \right)\).
B. \(D = \mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[y = 18x - 49\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
