Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
A. \(\frac{{3a}}{2}\).
B. \(\frac{{a\sqrt 2 }}{2}\).
C. \(\frac{{3a\sqrt 2}}{2}\).
Quảng cáo
Trả lời:
Gọi \[M\]là trung điểm của \[AC\] \[ \Rightarrow AC \bot OM\]\[ \Rightarrow \] \[OM\] là đường vuông góc chung của \[AC\] và \[OB\], \[AC = 3a\sqrt 2 \]\[ \Rightarrow OM = \frac{{3a\sqrt 2 }}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\sqrt 5 {a^3}\)

Lời giải
\(\begin{array}{l}V = {S_{ABC}} \cdot {A^\prime }A\\AB = AC = \frac{{2a}}{{\sqrt 2 }} = \sqrt 2 a\end{array}\)
\(\begin{array}{l}{S_{ABC}} = \frac{{{{(\sqrt 2 a)}^2}}}{2} = {a^2}\\{A^\prime }A = \sqrt {{A^\prime }{C^2} - A{C^2}} = \sqrt {{{(a\sqrt 7 )}^2} - {{(\sqrt 2 a)}^2}} = \sqrt 5 a\\ \Rightarrow {V_{S.ABC}} = {a^2} \cdot \sqrt 5 a = \sqrt 5 {a^3}\end{array}\)
Câu 2
A. \({2^{30}} < {3^{20}}\).
B. \({0,99^\pi } > {0,99^e}\).
Lời giải
Ta có: \(\pi > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
b) \(2y + y'.{\rm{tan}}x = 0\).
c) \(4y - y'' = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.