Câu hỏi:

15/12/2025 10 Lưu

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].

A. \(\frac{{3a}}{2}\).

B. \(\frac{{a\sqrt 2 }}{2}\).   

C. \(\frac{{3a\sqrt 2}}{2}\).  

D. \(\frac{{3a}}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc nhau và OA = OB= OC = 3a. Tính khoảng cách giữa hai đường thẳng AC và OB. (ảnh 1)

Gọi \[M\]là trung điểm của \[AC\] \[ \Rightarrow AC \bot OM\]\[ \Rightarrow \] \[OM\] là đường vuông góc chung của \[AC\] và \[OB\], \[AC = 3a\sqrt 2 \]\[ \Rightarrow OM = \frac{{3a\sqrt 2 }}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\sqrt 5 {a^3}\)

Cho khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A,BC = 2a và A'C = a căn bậc hai 7 Tính thể tích khối lăng trụ đã cho. (ảnh 1)

Lời giải

\(\begin{array}{l}V = {S_{ABC}} \cdot {A^\prime }A\\AB = AC = \frac{{2a}}{{\sqrt 2 }} = \sqrt 2 a\end{array}\)

\(\begin{array}{l}{S_{ABC}} = \frac{{{{(\sqrt 2 a)}^2}}}{2} = {a^2}\\{A^\prime }A = \sqrt {{A^\prime }{C^2} - A{C^2}}  = \sqrt {{{(a\sqrt 7 )}^2} - {{(\sqrt 2 a)}^2}}  = \sqrt 5 a\\ \Rightarrow {V_{S.ABC}} = {a^2} \cdot \sqrt 5 a = \sqrt 5 {a^3}\end{array}\)

Câu 2

A. \({2^{30}} < {3^{20}}\).  

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\). 
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai

c) \(4y - y'' = 2\).

Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP