Câu hỏi:

15/12/2025 7 Lưu

Cho hình chóp \[S.ABC\] có \[SA\] vuông góc mặt đáy, tam giác \[ABC\] vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). 

B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). 
C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABC có SA vuông góc mặt đáy, tam giác ABC vuông tại A, SA = 2 cm, AB = 4cm, AC = 3cm. Tính thể tích khối chóp S.ABC. (ảnh 1)

\({V_{S.ABC}} = \frac{1}{3}.SA.{S_{\Delta ABC}} = \frac{1}{3}.2.\frac{1}{2}.4.3 = 4\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\sqrt 5 {a^3}\)

Cho khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A,BC = 2a và A'C = a căn bậc hai 7 Tính thể tích khối lăng trụ đã cho. (ảnh 1)

Lời giải

\(\begin{array}{l}V = {S_{ABC}} \cdot {A^\prime }A\\AB = AC = \frac{{2a}}{{\sqrt 2 }} = \sqrt 2 a\end{array}\)

\(\begin{array}{l}{S_{ABC}} = \frac{{{{(\sqrt 2 a)}^2}}}{2} = {a^2}\\{A^\prime }A = \sqrt {{A^\prime }{C^2} - A{C^2}}  = \sqrt {{{(a\sqrt 7 )}^2} - {{(\sqrt 2 a)}^2}}  = \sqrt 5 a\\ \Rightarrow {V_{S.ABC}} = {a^2} \cdot \sqrt 5 a = \sqrt 5 {a^3}\end{array}\)

Câu 2

A. \({2^{30}} < {3^{20}}\).  

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\). 
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai

c) \(4y - y'' = 2\).

Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP