Câu hỏi:

15/12/2025 9 Lưu

Xét khối tứ diện \[ABCD\] có cạnh \[AB = x\], các cạnh còn lại đều bằng \[2\sqrt 3 \]. Các mệnh đề sau đúng hay sai?

a) Diện tích tam giác \(BCD\) bằng \({S_{BCD}} = 3\sqrt 3 \)

Đúng
Sai

b) \({V_{ABCD}} = \frac{{\sqrt 3 }}{3}x\sqrt {36 - {x^2}} \)

Đúng
Sai

c) Khi \(x = 3\) thì \(V = \frac{9}{4}\)

Đúng
Sai
d) Khi \[x = 3\sqrt 2 \]thì thể tích khối tứ diện \[ABCD\] đạt giá trị lớn nhất.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

Xét khối tứ diện ABCD có cạnh AB = x, các cạnh còn lại đều bằng 2 căn bậc hai của 3. Các mệnh đề sau đúng hay sai? (ảnh 1)

Gọi \(M\), \(N\) lần lượt là trung điểm \(CD\) và \(AB\); \(H\) là hình chiếu vuông góc của \(A\) lên \(BM\).

Ta có: \(\left. \begin{array}{l}CD \bot BM\\CD \bot AM\end{array} \right\} \Rightarrow CD \bot \left( {ABM} \right) \Rightarrow \left( {ABM} \right) \bot \left( {ABC} \right)\).

Mà \(AH \bot BM\); \(BM = \left( {ABM} \right) \cap \left( {ABC} \right)\)\(A\).

Do \(ACD\) và \(BCD\) là hai tam giác đều cạnh \(2\sqrt 3  \Rightarrow AM = BM = \frac{{\sqrt 3 }}{2} \cdot 2\sqrt 3  = 3\).

Tam giác \(AMN\) vuông tại \(N\), có: \(MN = \sqrt {A{M^2} - A{N^2}}  = \sqrt {9 - \frac{{{x^2}}}{4}} \).

Lại có: \({S_{BCD}} = \frac{{\sqrt 3 }}{4}{\left( {2\sqrt 3 } \right)^2} = 3\sqrt 3 \).

\({V_{ABCD}} = \frac{1}{3}AH \cdot {S_{BCD}} = \frac{1}{3} \cdot \frac{{x\sqrt {36 - {x^2}} }}{6} \cdot 3\sqrt 3  = \frac{{\sqrt 3 }}{6}x\sqrt {36 - {x^2}} \).

Ta có: \({V_{ABCD}} = \frac{{\sqrt 3 }}{6}x\sqrt {36 - {x^2}}  \le \frac{{\sqrt 3 }}{6} \cdot \frac{{{x^2} + 36 - {x^2}}}{2} = 3\sqrt 3 \).

Suy ra \({V_{ABCD}}\) lớn nhất bằng \(3\sqrt 3 \) khi \({x^2} = 36 - {x^2} \Rightarrow x = 3\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\sqrt 5 {a^3}\)

Cho khối lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông cân tại A,BC = 2a và A'C = a căn bậc hai 7 Tính thể tích khối lăng trụ đã cho. (ảnh 1)

Lời giải

\(\begin{array}{l}V = {S_{ABC}} \cdot {A^\prime }A\\AB = AC = \frac{{2a}}{{\sqrt 2 }} = \sqrt 2 a\end{array}\)

\(\begin{array}{l}{S_{ABC}} = \frac{{{{(\sqrt 2 a)}^2}}}{2} = {a^2}\\{A^\prime }A = \sqrt {{A^\prime }{C^2} - A{C^2}}  = \sqrt {{{(a\sqrt 7 )}^2} - {{(\sqrt 2 a)}^2}}  = \sqrt 5 a\\ \Rightarrow {V_{S.ABC}} = {a^2} \cdot \sqrt 5 a = \sqrt 5 {a^3}\end{array}\)

Câu 2

A. \({2^{30}} < {3^{20}}\).  

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\). 
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).

Đúng
Sai

b) \(2y + y'.{\rm{tan}}x = 0\).

Đúng
Sai

c) \(4y - y'' = 2\).

Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP