Câu hỏi:

15/12/2025 158 Lưu

Cho hình chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\)\(SA = a\sqrt 5 \), đáy là tam giác vuông tại \(A\) với \(AB = a\), \(AC = 2a\). Dựng \(AK\) vuông góc \(BC\)\(AH\) vuông góc \(SK\).

a) Hai đường thẳng \(BC\)\(AH\) vuông góc với nhau.
Đúng
Sai
b) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Đoạn thẳng \(AK\) có độ dài bằng \(\frac{{a\sqrt 5 }}{5}\)
Đúng
Sai
d) Tan góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{2}{5}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

d) Đúng: Tan góc giữa đườ (ảnh 1)

Ta có \(\left\{ \begin{array}{l}BC \bot AK\\BC \bot SA\end{array} \right. \Rightarrow BC \bot AH\) mà \(AH \bot SK\) nên \(AH \bot \left( {SBC} \right)\).

Do đó \(SK\) là hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBC} \right)\)

Đăt \(\alpha  = \left( {SA;\,\left( {SBC} \right)} \right) = \left( {SA;\,SK} \right) = \widehat {ASK}\).

Ta có \(AK = \frac{{AB \cdot AC}}{{BC}} = \frac{{AB \cdot AC}}{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

Khi đó \(\tan \alpha  = \frac{{AK}}{{AS}} = \frac{{\frac{{2a\sqrt 5 }}{5}}}{{a\sqrt 5 }} = \frac{2}{5}\).

a) Đúng: Hai đường thẳng \(BC\) và \(AH\) vuông góc với nhau.

b) Đúng: Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\)

c) Sai: Đoạn thẳng \(AK\) có độ dài bằng \(\frac{{2a\sqrt 5 }}{5}\)

d) Đúng: Tan góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{2}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \[\frac{1}{2} \notin \mathbb{Z}\] nên hàm số đã cho xác định \[ \Leftrightarrow 2{x^2} + mx + 2 > 0\].

Hàm số đã cho xác định với mọi \[x \in \mathbb{R} \Leftrightarrow 2{x^2} + mx + 2 > 0,\forall x \in \mathbb{R} \Leftrightarrow \Delta  = {m^2} - 16 < 0\]

\[ \Leftrightarrow  - 4 < m < 4\].

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2;...;2;3} \right\}\) nên có \(7\) giá trị \(m\).

Lời giải

Điều kiện.\(\left\{ \begin{array}{l}x > 0\\y > 0\\x > 2y\end{array} \right.\). Đặt \({\log _4}x = {\log _9}y = {\log _6}\left( {x - 2y} \right) = t\)

\( \Rightarrow \left\{ \begin{array}{l}x = {4^t}\\y = {9^t}\\x - 2y = {6^t}\end{array} \right. \Rightarrow {4^t} - {2.9^t} = {6^t} \Leftrightarrow {\left( {\frac{4}{9}} \right)^t} - {\left( {\frac{2}{3}} \right)^t} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\frac{2}{3}} \right)^t} =  - 1\,\,\,\left( {loai} \right)\\{\left( {\frac{2}{3}} \right)^t} = 2\end{array} \right.\)

Khi đó Điều kiện.\(\left\{ \begin{array}{l}x > 0\\y > (ảnh 1) .

Câu 4

a) Khi \(m = 2\) phương trình có 1 nghiệm \(x = 3\).
Đúng
Sai
b) Điều kiện xác định của phương trình \(x > 0\).
Đúng
Sai
c) Với điều kiện xác định của phương trình, đặt \(t = {\log _2}x\;\;\left( {t > 0} \right)\), phương trình đã cho có dạng \({t^2} - 2t + 2 - m = 0\)
Đúng
Sai
d) Có 2 giá trị nguyên để phương trình có nghiệm \(x \in \left[ {1;9} \right]\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Nếu bạn Huyền gửi theo kì hạn \[6\] tháng với lãi suất không đổi \[5\% \] thì số tiền bạn Huyền thu được cả lãi và gốc sau ba năm là \[231,94\] triệu.
Đúng
Sai
b) Sau \[48\] tháng bạn Huyền muốn có số tiền \(250\)thì bạn Huyền chọn hình thức lãi kép với lãi suất bằng \[1,005\% \] một tháng.
Đúng
Sai
c) Bạn Huyền chọn hình thức gửi theo kì hạn \[3\] tháng với lãi suất không đổi là \[6\% \] một năm thì sau \[13\]quý bạn Huyền có \[300\] triệu đồng.
Đúng
Sai
d) Vào ngày \(01/01/2024\)bạn Huyền gửi vào ngân hàng với lãi suất không đổi\[5\% \] một năm. Hàng tháng vào ngày \[01/01\] bạn Huyền rút ra số tiền không đổi là \[5\] triệu đồng. Sau \[44\] tháng thì bạn Huyền rút hết số tiền đã gửi trong ngân hàng.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP