Câu hỏi:

15/12/2025 59 Lưu

Cho biết tính đến ngày\(31\) tháng \(12\) năm \(2023\), dân số nước ta có khoảng \(99186471\) người và người ta dự đoán tỷ lệ tăng dân số trong vòng \(21\) năm, từ năm \(2020\) đến năm \(2040\) là khoảng \(0.99\% \) một năm. Như vậy, nếu tỉ lệ tăng dân số hằng năm không đổi thì đến năm nào dân số nước ta ở mức \(115\)triệu người?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn năm \(2023\) làm mốc tính, số dân hàng tỉ lệ tăng dân số trong vòng \(21\), từ năm \(2020\) đến năm \(2040\) năm là khoảng \(0.99\% \) một năm, nên dân số nước ta sau \(N\)năm \(( - 3 \le N \le 17)\)là:

\({S_N} = 99186471{\rm{ }}{\rm{. }}{\left( {1 + 0.99\% } \right)^N}\) để dân số là \(115\) triệu người thì \(N\) phải thỏa mãn:

\(1150{\rm{000000}} = 99186471{\rm{ }}{\rm{. }}{\left( {1 + 0.99\% } \right)^N}\)

\( \Leftrightarrow {\left( {1 + \frac{{0.99}}{{100}}} \right)^N} = \frac{{115{\rm{ 000 000}}}}{{{\rm{99 186 471}}}} \Leftrightarrow N.\ln \left( {1,0099} \right) = \ln \left( {\frac{{115{\rm{ 000 000}}}}{{{\rm{99 186 471}}}}} \right)\)

\( \Leftrightarrow N = \frac{{\ln \left( {\frac{{{\rm{115 000 000}}}}{{{\rm{99 186 471}}}}} \right)}}{{\ln \left( {1,0099} \right)}} \approx 15,016 \approx 15\)

Như vậy sau \(15\) năm, tức là năm\(2038\) thì dân số nước ta ở mức khoảng \(115\) triệu người.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \[\frac{1}{2} \notin \mathbb{Z}\] nên hàm số đã cho xác định \[ \Leftrightarrow 2{x^2} + mx + 2 > 0\].

Hàm số đã cho xác định với mọi \[x \in \mathbb{R} \Leftrightarrow 2{x^2} + mx + 2 > 0,\forall x \in \mathbb{R} \Leftrightarrow \Delta  = {m^2} - 16 < 0\]

\[ \Leftrightarrow  - 4 < m < 4\].

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2;...;2;3} \right\}\) nên có \(7\) giá trị \(m\).

Lời giải

Điều kiện.\(\left\{ \begin{array}{l}x > 0\\y > 0\\x > 2y\end{array} \right.\). Đặt \({\log _4}x = {\log _9}y = {\log _6}\left( {x - 2y} \right) = t\)

\( \Rightarrow \left\{ \begin{array}{l}x = {4^t}\\y = {9^t}\\x - 2y = {6^t}\end{array} \right. \Rightarrow {4^t} - {2.9^t} = {6^t} \Leftrightarrow {\left( {\frac{4}{9}} \right)^t} - {\left( {\frac{2}{3}} \right)^t} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\frac{2}{3}} \right)^t} =  - 1\,\,\,\left( {loai} \right)\\{\left( {\frac{2}{3}} \right)^t} = 2\end{array} \right.\)

Khi đó Điều kiện.\(\left\{ \begin{array}{l}x > 0\\y > (ảnh 1) .

Câu 4

a) Hai đường thẳng \(BC\)\(AH\) vuông góc với nhau.
Đúng
Sai
b) Đường thẳng \(AH\) vuông góc với mặt phẳng \(\left( {SBC} \right)\)
Đúng
Sai
c) Đoạn thẳng \(AK\) có độ dài bằng \(\frac{{a\sqrt 5 }}{5}\)
Đúng
Sai
d) Tan góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{2}{5}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 2\).                  
B. \( - 3\).                 
C. \(\frac{1}{{100}}\).   
D. \(\frac{1}{{1000}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{a^{\frac{{13}}{6}}}\].                      
B. \({a^{\frac{{13}}{8}}}\).                           
C. \({a^{\frac{{17}}{4}}}\).                           
D. \({a^{\frac{{17}}{6}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP