Câu hỏi:

15/12/2025 11 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = a\),Khẳng định nào sau đây đúng? (ảnh 1) , Khẳng định nào sau đây đúng? (ảnh 2). Gọi \(M\) là trung điểm của \[AD\], \(I\) là giao điểm của \(AC\) và \(BM\). Khẳng định nào sau đây đúng?

A. \(\left( {SAC} \right) \bot \left( {SMB} \right)\).    

B. \(\left( {SAC} \right) \bot \left( {SBD} \right)\).
C. \(\left( {SBC} \right) \bot \left( {SMB} \right)\).
D. \(\left( {SAB} \right) \bot \left( {SBD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Khẳng định nào sau đây đúng? (ảnh 3)

+ Ta có:Khẳng định nào sau đây đúng? (ảnh 4)

+ Xét tam giác vuông \(ABM\) có:Khẳng định nào sau đây đúng? (ảnh 5).

Xét tam giác vuông \(ACD\) có: Khẳng định nào sau đây đúng? (ảnh 6). Ta có:

\(\cot \widehat {AIM} = \cot \left( {{{180}^0} - \left( {\widehat {AMB} + \widehat {CAD}} \right)} \right) =  - \cot \left( {\widehat {AMB} + \widehat {CAD}} \right)\) \[ =  - \frac{{1 - \tan \widehat {AMB}.\tan \widehat {CAD}}}{{\tan \widehat {AMB} + \tan \widehat {CAD}}} = 0\]

\( \Rightarrow \widehat {AIM} = {90^0}\) Khẳng định nào sau đây đúng? (ảnh 7)

Từ (1) và (2) suy ra:Khẳng định nào sau đây đúng? (ảnh 8)Khẳng định nào sau đây đúng? (ảnh 9) nên Khẳng định nào sau đây đúng? (ảnh 10)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {64,3^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a,góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).

Đúng
Sai

b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).

Đúng
Sai

c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].

Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(f'\left( x \right) = 2\sin 2x\). 

B. \(f'\left( x \right) = \cos 2x\). 
C. \(f'\left( x \right) = 2\cos 2x\).
D. \(f'\left( x \right) =  - \frac{1}{2}\cos 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP