Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh là \(a > 0\). Khi đó, khoảng cách giữa hai đường thẳng chéo nhau \(AB'\) và \(BC'\) là
A. \(\frac{{a\sqrt 3 }}{2}\).
Quảng cáo
Trả lời:
Cách 1:
Chọn hệ trục \(Oxyz\) như hình vẽ.
\(B\left( {0;0;0} \right)\), \(A\left( {a;0;0} \right)\), \(B'\left( {0;0;a} \right)\), \(C'\left( {0;a;a} \right)\).
Ta có: \(\overrightarrow {AB} = \left( { - a;0;0} \right)\)
\(\overrightarrow {AB'} = \left( { - a;0;a} \right)\)\( \Rightarrow \)\(AB'\) có một VTCP là \(\overrightarrow {{u_1}} = \left( { - 1;0;1} \right)\).
\(\overrightarrow {BC'} = \left( {0;a;a} \right)\)\( \Rightarrow BC'\) có một VTCP là \(\overrightarrow {{u_2}} = \left( {0;1;1} \right)\).
\(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( { - 1;1; - 1} \right)\).
Suy ra: \(d\left( {AB',BC'} \right) = \frac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} = \frac{a}{{\sqrt 3 }} = \frac{{a\sqrt 3 }}{3}\).
Cách 2:
Gọi \(O\) là tâm hình vuông \(ABCD\). Trong mặt phẳng \(\left( {ACC'A'} \right)\), kẻ \(CH \bot C'O\) tại \(H\),
mà \(CH \bot BD\) (do \(BD \bot \left( {ACC'A'} \right)\)) nên \(CH \bot \left( {C'BD} \right)\)\( \Rightarrow d\left( {C;C'BD} \right) = CH\)
Ta có: \(AB'\;{\rm{//}}\;\left( {C'BD} \right)\)\( \Rightarrow d\left( {AB',BC'} \right) = d\left( {AB',\left( {C'BD} \right)} \right) = d\left( {A,\left( {C'BD} \right)} \right) = d\left( {C,\left( {C'BD} \right)} \right) = CH\)
Xét \(\Delta \)\(C'CO\) vuông tại \(C\), đường cao \(CH\):
\(\frac{1}{{C{H^2}}} = \frac{1}{{C{O^2}}} + \frac{1}{{C{{C'}^2}}} = \frac{3}{{{a^2}}} \Rightarrow CH = \frac{{a\sqrt 3 }}{3}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{33}}{{40}}\)
Lời giải
Xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán: \(\frac{{25 + 20 - 12}}{{40}} = \frac{{33}}{{40}}\).Lời giải
Trả lời: \( \approx {64,3^0}\)
Lời giải
Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.
Kẻ \(CI \bot AD\)
Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)
\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)
Ta có: \(SI = \sqrt {S{A^2} + A{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)
Câu 3
a) Biến cố "Tích hai số ghi trên hai thẻ là một số chẵn" là \(A \cup B\).
b) \(P(A \cup B) = P(A) + P(B)\)
c) \(P(A) < P(B){\rm{ }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(f'\left( x \right) = 2\sin 2x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.