Câu hỏi:

15/12/2025 11 Lưu

Gọi \(S\) là tập nghiệm của bất phương trình \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right)\). Kí hiệu \(m\), \(M\)lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của tập \(S\). Các mệnh đề sau đúng hay sai?

a) \(M - m = 3\).

Đúng
Sai

b) \(M - m = 1\).

Đúng
Sai

c) \(m + M = 3\).

Đúng
Sai
d) \(m + M = 2\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Sai

c) Đúng

d) Sai

Ta có: \({\log _{0,3}}\left( {4{x^2}} \right) \ge {\log _{0,3}}\left( {12x - 5} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{12x - 5 > 0\,\,\,\,}\\{4{x^2} \le 12x - 5}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{4{x^2} - 12x + 5 \le 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > \frac{5}{{12}}\,\,\,\,\,}\\{\frac{1}{2} \le x \le \frac{5}{2}}\end{array}} \right. \Leftrightarrow \frac{1}{2} \le x \le \frac{5}{2}\).

Tập nghiệm của bất phương trình đã cho \(S = \left[ {\frac{1}{2};\,\frac{5}{2}} \right]\).

Khi đó: \(M = \frac{5}{2}\); \(m = \frac{1}{2}\) và \(m + M = \frac{5}{2} + \frac{1}{2} = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {64,3^0}\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a,góc BAD = 120,SA vuông góc (ABCD) và SA = căn bậc hai 3 a. Tính góc giữa đường thẳng SC và mặt phẳng (SAD)? (ảnh 1)

Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.

Kẻ \(CI \bot AD\)

Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)

\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)

Ta có: \(SI = \sqrt {S{A^2} + A{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).

Đúng
Sai

b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).

Đúng
Sai

c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].

Đúng
Sai
d) \[d\left( {CD,SB} \right) = BD\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f'\left( x \right) = 2\sin 2x\). 

B. \(f'\left( x \right) = \cos 2x\). 
C. \(f'\left( x \right) = 2\cos 2x\).
D. \(f'\left( x \right) =  - \frac{1}{2}\cos 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP