Mức cường độ âm \(P\) của một nguồn âm cho trước xác định bởi \(P = 10\log \frac{I}{{{I_0}}}\) được đo bằng Decibel (db), trong đó \(I\) là cường độ độ âm có đơn vị là \[{\rm{W}}\] và \({I_0} = {10^{ - 12}}{\rm{W}}/{{\rm{m}}^{\rm{2}}}\) là cường độ âm chuẩn mà tai người có thể nghe thấy được. Giả sử một nguồn âm phát ra cường độ âm \(I = {t^2} + t + 1\left( {\rm{W}} \right)\) với \(t\) là thời gian được tính bằng giây. Xác định tốc độ thay đổi mức cường độ âm tại thời điểm \(t = 3\) giây.
Quảng cáo
Trả lời:
Trả lời: \( \approx 2,3385 {\rm{db/s}}\)
Lời giải.
Ta có \(P = 10\log \frac{I}{{{I_0}}}\)\( = 10\log I - 10\log {I_0}\) \( = 10\log \left( {{t^2} + t + 1} \right) - 10\log {I_0}\)
Mức độ thay đổi cường độ âm được tính theo biểu thức : \(P\prime \left( t \right) = 10.\frac{{2t + 1}}{{\left( {{t^2} + t + 1} \right)\ln 10}}\)
Suy ra \(P\prime \left( 3 \right) = 10.\frac{7}{{13\ln 10}}\) \( \approx 2,3385 {\rm{db/s}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{33}}{{40}}\)
Lời giải
Xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán: \(\frac{{25 + 20 - 12}}{{40}} = \frac{{33}}{{40}}\).Lời giải
Trả lời: \( \approx {64,3^0}\)
Lời giải
Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.
Kẻ \(CI \bot AD\)
Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)
\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)
Ta có: \(SI = \sqrt {S{A^2} + A{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)
Câu 3
a) Biến cố "Tích hai số ghi trên hai thẻ là một số chẵn" là \(A \cup B\).
b) \(P(A \cup B) = P(A) + P(B)\)
c) \(P(A) < P(B){\rm{ }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(f'\left( x \right) = 2\sin 2x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.