Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Đường thẳng \(AB'\) hợp với đáy một góc \(60^\circ \). Tính thể tích \(V\) của khối lăng trụ \(ABC.A'B'C'\).
Quảng cáo
Trả lời:

Ta có \(AA' \bot \left( {A'B'C'} \right)\) nên \(\widehat {\left( {AB';\left( {A'B'C'} \right)} \right)} = \widehat {AB'A'} = 60^\circ \).
Suy ra: \(AA' = A'B'.\tan 60^\circ = a\sqrt 3 \).
Thể tích khối lăng trụ là \(V = AA'.{S_{\Delta A'B'C'}} = a\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3{a^3}}}{4}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{7{a^3}\sqrt 3 }}{2}\)
Lời giải
Gọi \(O,I\) theo thứ tự là tâm của đáy lớn \(ABC\) và đáy bé \({A^\prime }{B^\prime }{C^\prime };K,J\) theo thứ tự là trung điểm của \(BC\) và \({B^\prime }{C^\prime }\).
Ta có \(h = IO = \frac{{3a}}{2}\) là chiều cao của hình chóp cụt đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\).

Diện tích hai đáy hình chóp cụt đều là:
\({S_1} = {S_{\Delta ABC}} = \frac{{{{(4a)}^2}\sqrt 3 }}{4} = 4{a^2}\sqrt 3 ;{S_2} = {S_{\Delta {A^\prime }{B^\prime }{C^\prime }}} = \frac{{{{(2a)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)
Thể tích khối chóp cụt đều là:
\(V = \frac{1}{3}h\left( {{S_1} + \sqrt {{S_1}{S_2}} + {S_2}} \right)\)
\( = \frac{1}{3} \cdot \frac{{3a}}{2}\left( {4{a^2}\sqrt 3 + \sqrt {4{a^2}\sqrt 3 \cdot {a^2}\sqrt 3 } + {a^2}\sqrt 3 } \right) = \frac{{7{a^3}\sqrt 3 }}{2}\) (đơn vị thể tích)
Câu 2
A. \[45^\circ \].
Lời giải
Ta có: \(SA \bot \left( {ABCD} \right)\).
Do đó \(AC\) là hình chiếu của \(SC\) lên \(\left( {ABCD} \right)\).
\( \Rightarrow \left( {SC,\left( {ABCD} \right)} \right)\)\( = \left( {SC,AC} \right)\)\( = \widehat {SCA}\).
Xét tam giác \(SAC\) vuông tại \[A\] có \[\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{\frac{{a\sqrt 6 }}{3}}}{{a\sqrt 2 }} = \frac{{\sqrt 3 }}{3}\].
\( \Rightarrow \widehat {SCA} = 30^\circ \).
Vậy góc giữa \(SC\) và \(\left( {ABCD} \right)\) là \(30^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(x = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).
b) Tam giác \(SAC\) là tam giác vuông.
c) \(\left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.