Câu hỏi:

16/12/2025 24 Lưu

Có 10 bạn học sinh trong đội tuyển học sinh giỏi môn Toán 12 của một trường phổ thông gồm 2 bạn đến từ lớp \(12\;A1,3\) bạn đến từ lớp \(12\;A2,5\) bạn còn lại đến từ các lớp khác nhau. Thầy giáo xếp ngẫu nhiên các bạn đó vào ngồi một bàn dài mà mỗi bên có 5 ghế đối diện nhau. Tính xác suất sao cho không có học sinh nào cùng lớp ngồi đối diện nhau.

A. \(\frac{{73}}{{126}}\).              

B. \(\frac{{53}}{{126}}\).  
C. \(\frac{5}{9}\).  
D. \(\frac{{38}}{{63}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Gọi các biến cố \(A\): "Có học sinh cùng lớp ngồi đối diện nhau";

\(\bar A\): "Không có học sinh cùng lớp ngồi đối diện nhau";

\({A_1}\): "Có học sinh lớp 12A1 ngồi đối diện nhau";

\({A_2}\): "Có học sinh lớp \(12\;A2\) ngồi đối diện nhau".

Khi đó \({A_1}{A_2}\) là biến cố: "Học sinh \(12\;A1\) ngồi đối diện nhau và học sinh \(12\;A2\) ngồi đối diện nhau".

Ta có: \(P\left( {{A_1}} \right) = \frac{{5 \cdot 2 \cdot 8!}}{{10!}} = \frac{1}{9};P\left( {{A_2}} \right) = \frac{{5A_3^2 \cdot 8!}}{{10!}} = \frac{1}{3};P\left( {{A_1}{A_2}} \right) = \frac{{5 \cdot 2 \cdot 4 \cdot A_3^2 \cdot 6!}}{{10!}} = \frac{1}{{21}}\).

Suy ra: \(P(A) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) - P\left( {{A_1}{A_2}} \right) = \frac{1}{9} + \frac{1}{3} - \frac{1}{{21}} = \frac{{25}}{{63}}\).

Vậy xác suất để xếp được hàng mà không có học sinh cùng lớp nào ngồi đối diện nhau là:

\(P(\bar A) = 1 - P(A) = 1 - \frac{{25}}{{63}} = \frac{{38}}{{63}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Nghiệm của phương trình là các số vô tỷ.

Đúng
Sai

b) Tổng các nghiệm của một phương trình là một số nguyên.

Đúng
Sai

c) Tích các nghiệm của phương trình là một số âm.

Đúng
Sai
d) Phương trình vô nghiệm.
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

\[{2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {16^{{x^2} - 1}} \Leftrightarrow {2^{\left| {\frac{{28}}{3}x + 4} \right|}} = {2^{4{x^2} - 4}} \Leftrightarrow \left| {\frac{{28}}{3}x + 4} \right| = 4{x^2} - 4\,\,\left( 1 \right).\]

TH1: Nếu \[x >  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[\frac{{28}}{3}x + 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} - \frac{{28}}{3}x - 8 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\,\,\,\,\left( {TM} \right)\\x =  - \frac{2}{3}\,\,\,\left( L \right)\end{array} \right.\]

TH1: Nếu \[x \le  - \frac{3}{7}.\] PT \[\left( 1 \right):\] \[ - \frac{{28}}{3}x - 4 = 4{x^2} - 4 \Leftrightarrow 4{x^2} + \frac{{28}}{3}x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\,\,\left( L \right)\\x =  - \frac{7}{3}\,\,\,\left( {TM} \right)\end{array} \right.\]

Phương trình có tập nghiệm \[S = \left\{ { - \frac{7}{3};\,3} \right\}\].

{\rm{D}}\) có \(SA = x\) và tất cả các cạnh đều bằng nhau và bằng \(a\). Các mệnh đề sau đúng hay sai?

Lời giải

Trả lời: \(\frac{{7{a^3}\sqrt 3 }}{2}\)

Lời giải

Gọi \(O,I\) theo thứ tự là tâm của đáy lớn \(ABC\) và đáy bé \({A^\prime }{B^\prime }{C^\prime };K,J\) theo thứ tự là trung điểm của \(BC\) và \({B^\prime }{C^\prime }\).

Ta có \(h = IO = \frac{{3a}}{2}\) là chiều cao của hình chóp cụt đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\).

Một hình chóp cụt đều ABC.A'B'C' có cạnh đáy lớn bằng 4a, cạnh đáy nhỏ bằng 2a và chiều cao của nó bằng 3a/2. Tìm thể tích của khối chóp cụt đều đó. (ảnh 1)

Diện tích hai đáy hình chóp cụt đều là:

\({S_1} = {S_{\Delta ABC}} = \frac{{{{(4a)}^2}\sqrt 3 }}{4} = 4{a^2}\sqrt 3 ;{S_2} = {S_{\Delta {A^\prime }{B^\prime }{C^\prime }}} = \frac{{{{(2a)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Thể tích khối chóp cụt đều là:

\(V = \frac{1}{3}h\left( {{S_1} + \sqrt {{S_1}{S_2}}  + {S_2}} \right)\)

\( = \frac{1}{3} \cdot \frac{{3a}}{2}\left( {4{a^2}\sqrt 3  + \sqrt {4{a^2}\sqrt 3  \cdot {a^2}\sqrt 3 }  + {a^2}\sqrt 3 } \right) = \frac{{7{a^3}\sqrt 3 }}{2}\) (đơn vị thể tích)

Câu 3

A. \(\frac{{a\sqrt 6 }}{3}\).

B. \(\frac{{a\sqrt 3 }}{3}\).
C. \(\frac{{a\sqrt 8 }}{3}\). 
D. .\(\frac{{a\sqrt 2 }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(f\left( {\frac{\pi }{2}} \right) =  - 1\).

Đúng
Sai

b) \(f'\left( x \right) = \frac{{ - 2\sin 2x}}{{3.\sqrt[3]{{{{\cos }^2}2x}}}}\).

Đúng
Sai

c) \(f'\left( {\frac{\pi }{2}} \right) = 1\).

Đúng
Sai
d) \(3.{y^2}.y' + 2\sin 2x = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP