Cường độ một trận động dất \(M\) (Richter) tính theo thang Richter được xác định theo công thức \(M = \log A - \log {A_0}\). Với \(A\) là cường độ tối đa đo được bằng địa chấn kế (biên độ của những sóng địa chấn đo ở \(100{\rm{ km}}\) cách chấn tâm của cơn động đất) và \[{A_0}\] là một biên độ chuẩn. Năng lượng được phát ra bởi một trận động đất có cường độ \(M\)được xác định bởi \({E_M} = {E_0}{.10^{1,5M}}\) trong đó \({E_0}\) là một hằng số dương. Hỏi với hai trận động đất có biên độ \({A_1},{A_2}\) thỏa mãn \({A_1} = 4{A_2}\), thì tỉ lệ năng lượng được phát ra bởi hai trận động đất này là?
Quảng cáo
Trả lời:
Trả lời: \(8\)
Lời giải
Theo công thức \({E_M} = {E_0}{.10^{1,5M}}\) ta có \(\left\{ \begin{array}{l}{E_1} = {10^{1,5{M_1}}}\\{E_2} = {10^{1,5{M_2}}}\end{array} \right.\).
Suy ra \(\frac{{{E_2}}}{{{E_1}}} = \frac{{{{10}^{1,5{M_2}}}}}{{{{10}^{1,5{M_1}}}}} = {10^{1,5\left( {{M_2} - {M_1}} \right)}} = {10^{1,5\left( {\log {A_1} - \log {A_2}} \right)}} = {10^{1,5\log \frac{{{A_1}}}{{{A_2}}}}} = {10^{1,5\log 4}} = 8\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{1}{6}\)
Lời giải
Vì hai bạn An và Bình tung xúc xắc ra kết quả độc lập. Do đó xác suất để hai bạn ra cùng số điểm là \(6 \cdot {\left( {\frac{1}{6}} \right)^2} = \frac{1}{6}\).
Lời giải
Trả lời: \(\widehat {SOC} = {106,1^0}\)
Lời giải
![Cho hình chóp S.ABCD có đáy là hình vuông cạnh a,SA vuông góc (ABCD). Biết góc giữa SC và mặt phẳng (ABCD) là 60 độ. Tính góc phẳng nhị diện [S,BD,C]? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid4-1765849061.png)
Ta có: \(SA \bot (ABCD)\) tại \(A\) và \(SC\) cắt mp \((ABCD)\) tại \(C\)
\( \Rightarrow AC\) là hình chiếu của \(SC\) trên mp \((ABCD)\)
\( \Rightarrow (SC,(ABCD)) = (SC,AC) = \widehat {SCA} = {60^^\circ }\)
Ta có: \( \Rightarrow SA = AC \cdot \tan {60^^\circ } = a\sqrt 2 \cdot \sqrt 3 = \sqrt 6 a\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BD \bot SA}\\{BD \bot AC}\end{array} \Rightarrow BD \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBD) \cap (CBD) = BD}\\{{\mathop{\rm Trong}\nolimits} \,(CBD),CO \bot BD \Rightarrow [S,BD,C] = \widehat {SOC}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),SO \bot BD}\end{array}} \right.\)
Xét \(\Delta SAO\) vuông tại \(A:\tan \widehat {SOA} = \frac{{SA}}{{AO}} = \frac{{a\sqrt 6 }}{{\frac{{a\sqrt 2 }}{2}}} = 2\sqrt 3 \Rightarrow \widehat {SOA} = {73,9^0}\)
\( \Rightarrow \widehat {SOC} = {106,1^0}\)
Câu 3
A. \[45^\circ \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).
b) Tam giác \(SAC\) là tam giác vuông.
c) \(\left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.