Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng nhau. Gọi \(E\), \(M\) lần lượt là trung điểm của các cạnh \(BC\) và \(SA\), \(\alpha \) là góc tạo bởi đường thẳng \(EM\) và mặt phẳng \(\left( {SBD} \right)\). Giá trị của \(\tan \alpha \) bằng
Quảng cáo
Trả lời:
Dựng hình bình hành \(ABFC\).
Ta có \(EM\;{\rm{//}}\;SF\)nên góc giữa \(EM\) và \(\left( {SBD} \right)\) bằng góc giữa \(SF\) và \(\left( {SBD} \right)\).
\(FB\;{\rm{//}}\;AC\)\( \Rightarrow FB \bot \left( {SBD} \right)\) do đó góc giữa \(SF\) và \(\left( {SBD} \right)\) bằng góc \(\widehat {FSB}\).
Ta có \(\tan \widehat {FSB} = \frac{{BF}}{{SB}} = \frac{{AC}}{{SB}} = \sqrt 2 \). Vậy chọn D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{{83}}{{735}}\)
Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).
Số có 4 chữ số có dạng \(\overline {abcd} \).
Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".
Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).
Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).
Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).
Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).
Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).
Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).
Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).
Câu 2
Lời giải
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right.\) nên \[SA \bot \left( {ABCD} \right)\]
Suy ra \[SA \bot AC\] (B đúng); \(SA \bot BC\); \(SA \bot BD\).
Mặt khác \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\) suy ra \[BC \bot AH\] (A đúng).
và \(BD \bot AC\) nên \(BD \bot \left( {SAC} \right)\) suy ra \[BD \bot SC\];
Đồng thời \(HK\;{\rm{//}}\;BD\) nên \(HK \bot SC\) (C đúng).
Vậy mệnh đề sai là \(AK \bot BD\) (vì không đủ điều kiện chứng minh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.