Câu hỏi:

16/12/2025 11 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng nhau. Gọi \(E\), \(M\) lần lượt là trung điểm của các cạnh \(BC\) và \(SA\), \(\alpha \) là góc tạo bởi đường thẳng \(EM\) và mặt phẳng \(\left( {SBD} \right)\). Giá trị của \(\tan \alpha \) bằng

A. \[2\]. 
B. \[\sqrt 3 \]. 
C. \[1\].
D. \[\sqrt 2 \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của các cạnh BC và SA, alpha là góc tạo bởi đường thẳng EM và mặt phẳng (SBD). Giá trị của (tan alpha) bằng (ảnh 1)

Dựng hình bình hành \(ABFC\).

Ta có \(EM\;{\rm{//}}\;SF\)nên góc giữa \(EM\) và \(\left( {SBD} \right)\) bằng góc giữa \(SF\) và \(\left( {SBD} \right)\).

\(FB\;{\rm{//}}\;AC\)\( \Rightarrow FB \bot \left( {SBD} \right)\) do đó góc giữa \(SF\) và \(\left( {SBD} \right)\) bằng góc \(\widehat {FSB}\).

Ta có \(\tan \widehat {FSB} = \frac{{BF}}{{SB}} = \frac{{AC}}{{SB}} = \sqrt 2 \). Vậy chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{83}}{{735}}\)

Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).

Số có 4 chữ số có dạng \(\overline {abcd} \).

Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".

Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).

Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).

Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).

Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).

Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).

Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).

Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, SAD. Mệnh đề nào sau đây là sai? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right.\) nên \[SA \bot \left( {ABCD} \right)\]

Suy ra \[SA \bot AC\] (B đúng); \(SA \bot BC\); \(SA \bot BD\).

Mặt khác \(BC \bot AB\) nên \(BC \bot \left( {SAB} \right)\) suy ra \[BC \bot AH\] (A đúng).

và \(BD \bot AC\) nên \(BD \bot \left( {SAC} \right)\) suy ra \[BD \bot SC\];

Đồng thời \(HK\;{\rm{//}}\;BD\) nên \(HK \bot SC\) (C đúng).

Vậy mệnh đề sai là \(AK \bot BD\) (vì không đủ điều kiện chứng minh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP