Câu hỏi:

16/12/2025 19 Lưu

Cho hình lập phương \[ABCD.A'B'C'D'\] có độ dài cạnh bằng \[10\]. Tính khoảng cách giữa hai mặt phẳng \[\left( {ADD'A'} \right)\] và \[\left( {BCC'B'} \right)\].

A. \[\sqrt {10} \].  

B. \[100\].
C. \[10\].  
D. \[5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lập phương ABCD.A'B'C'D' có độ dài cạnh bằng 10. Tính khoảng cách giữa hai mặt phẳng (ADD'A') và (BCC'B'). (ảnh 1)

Ta có \[\left( {ADD'A'} \right){\rm{//}}\left( {BCC'B'} \right)\]\[ \Rightarrow d\left( {\left( {ADD'A'} \right);\left( {BCC'B'} \right)} \right)\]\[ = d\left( {A;\left( {\left( {BCC'B'} \right)} \right)} \right)\]\[ = AB = 10\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Sai

Cho hình chóp S.ABCD có SC = x (0 < x < căn bậc 3 ), các cạnh còn lại đều bằng 1 (tham khảo hình vẽ). Biết rằng thể tích khối chóp S.ABCD lớn nhất khi và chỉ khi x = căn bậc hai a /b (a,b thuộc Z^ +). Các mệnh đề sau đúng hay sai? (ảnh 2)

Gọi \(H\) là hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\), vì \(SA = SB = SD\) nên \(H \in AO\) với \(O\) là trung điểm của \(BD\)

Ta xét hai tam giác \(SBD\) và \(ABD\) có cạnh \(BD\) chung, \(SB = AB\), \(SD = AD\) nên \(\Delta SBD = \Delta ABD\) suy ra \(AO = SO = OC\) do đó \(\Delta SAC\) vuông tại \(S\).

Ta có \(AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {1 + {x^2}} \) \( \Rightarrow BO = \frac{{\sqrt {3 - {x^2}} }}{2}\)\( \Rightarrow {S_{ABCD}} = \frac{{\sqrt {\left( {1 + {x^2}} \right)\left( {3 - {x^2}} \right)} }}{2}\) \(\left( {0 < x < \sqrt 3 } \right)\)

Mặt khác \(SH = \frac{{SA.SC}}{{\sqrt {S{A^2} + S{C^2}} }}\)\( = \frac{x}{{\sqrt {1 + {x^2}} }}\)

Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}}\)\( = \frac{{\sqrt {{x^2}\left( {3 - {x^2}} \right)} }}{6} \le \frac{1}{4}\).

Thể tích khối chóp \(S.ABCD\) lớn nhất khi và chỉ khi\({x^2} = 3 - {x^2}\)\( \Leftrightarrow x = \frac{{\sqrt 6 }}{2}\).

Vậy \(\left\{ \begin{array}{l}a = 6\\b = 2\end{array} \right.\). Suy ra \({a^2} - 8b = 20\).

Câu 3

A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).  

B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

D. Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Xác suất để An ném trước mà vào rổ là \(\frac{{25}}{{30}}\).

Đúng
Sai

b) Xác suất để An ném sau mà vào rổ là \(\frac{{22}}{{30}}\).

Đúng
Sai

c) Xác suất để An ném vào rổ là \(\frac{{47}}{{120}}\).

Đúng
Sai
d) Việc ném bóng vào rổ của An và Bình sẽ không phụ thuộc vào việc được ném trước hay ném sau.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP