Câu hỏi:

16/12/2025 15 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \) Gọi \(\alpha \) là góc tạo bởi giữa đường thẳng \(SB\) và mặt phẳng \(\left( {SAC} \right)\), khi đó \(\alpha \) thỏa mãn hệ thức nào sau đây:

A. \(\cos \alpha  = \frac{{\sqrt 2 }}{8}\). 

B. \(\sin \alpha  = \frac{{\sqrt 2 }}{8}\).                
C. \(\sin \alpha  = \frac{{\sqrt 2 }}{4}\).
D. \(\cos \alpha  = \frac{{\sqrt 2 }}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(O\) là tâm của đáy \(ABCD\).

Ta có \(BO \bot AC\) và \(BO \bot SA\) nên \(SO\) là hình chiếu của \(SB\) trên \(\left( {SAC} \right)\).

Suy ra \(\alpha  = \widehat {BSO}\).

Lại có \(BO = \frac{{a\sqrt 2 }}{2}\), \(SB = \sqrt {S{A^2} + A{B^2}}  = 2a\). Suy ra \(\sin \alpha  = \frac{{BO}}{{SB}} = \frac{{\sqrt 2 }}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left( { - \infty ;\,2} \right) \cup \left( {3;\, + \infty } \right)\).

B. \(\left( { - \infty ;\,2} \right)\).
C. \(\left( {2;\,3} \right)\). 
D. \(\left( {3;\, + \infty } \right)\).

Lời giải

\({\log _{\frac{1}{2}}}\left( {{x^2} - x + 7} \right) > 0\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5x + 7 > 0\\{x^2} - 5x + 7 < 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\forall x \in \mathbb{R}\\{x^2} - 5x + 6 < 0\end{array} \right.\)\( \Rightarrow x \in \left( {2;\,3} \right)\).

Câu 2

A. \({2^{30}} < {3^{20}}\). 

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\).
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
Đúng
Sai
b) \(2y + y'.{\rm{tan}}x = 0\).
Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = {\log _2}x + 1\].

B. \[y = {\log _2}\left( {x + 1} \right)\].  
C. \[y = {\log _3}x\]. 
D. \[y = {\log _3}\left( {x + 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP