Câu hỏi:

16/12/2025 17 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 17 đến câu 22. Ở mỗi câu thí sinh điền đáp án của câu đó.
Anh Toàn được tuyển dụng vào một công ty đầu năm 2013. Công ty trả lương cho anh theo hình thức: Lương khởi điểm anh nhận là 6 triệu đồng / tháng và cứ sau 3 năm công ty lại tăng lương cho anh thêm 25% số lương đang hưởng. Hiện nay (năm 2024) anh đang được hưởng lương là …………. triệu đồng một tháng (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 11,7

Tính từ năm 2013 đến 2024, anh Toàn đã được 3 lần tăng lương.

Lương của anh Toàn sau lần tăng đầu tiên là: \({L_1} = 6.1,25\) triệu

Lương của anh Toàn sau lần tăng thứ 2 là: \({L_2} = {L_1} + 25\% {L_1} = {L_1}.1,25 = 6.1,{25^2}\) triệu

Lương của anh Toàn sau lần tăng thứ 3 là: \({L_3} = {L_2} + 25\% {L_2} = {L_2}.1,25 = 6.1,{25^3} \approx 11,7\) triệu

Vậy lương của anh Toàn hiện đang hưởng là \(11,7\) triệu mỗi tháng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hàm số có tập xác định là \[\mathbb{R}\].              
Đúng
Sai
b) Hàm số có tập giá trị là \[\left( {0\,;\, + \infty } \right)\].              
Đúng
Sai
c) \[f\left( {2024} \right) > f\left( {2025} \right)\].              
Đúng
Sai
d) Đồ thị hàm số đi qua điểm \[\left( {2\,;\,0} \right)\] và luôn nằm bên phải trục tung.
Đúng
Sai

Lời giải

a) SAI
Vì tập xác định của hàm số là \[\left( {1\,;\, + \infty } \right)\].

b) SAI
Vì tập giá trị của hàm số là \[\mathbb{R}\].

c) SAI
Vì hàm số đồng biến trên \[\left( {1\,;\, + \infty } \right)\] nên \[f\left( {2024} \right) < f\left( {2025} \right)\].

d) ĐÚNG
Vì đồ thị của hàm số luôn nằm bên phải trục tung và đi qua điểm \[\left( {2\,;\,0} \right)\].

Lời giải

Đáp án:

a) \(\left( {SBC} \right)\).

b) \(45^\circ \).

Đáp án: \(\frac{1}{2}{a^2}.\) (ảnh 1)

a. Trong các mặt bên của hình chóp \(S.ABC\), mặt phẳng vuông góc với mặt phẳng \(\left( {SAM} \right)\) là \(\left( {SBC} \right)\)

Ta có:

\(BC \bot AM\) (\(\Delta ABC\) đều)

\(BC \bot SA\) \(\left( {SA \bot \left( {ABC} \right)} \right)\)

Suy ra \(BC \bot \left( {SAM} \right)\)

Mà \(BC \subset \left( {SBC} \right)\)

Vậy \(\left( {SAM} \right) \bot \left( {SBC} \right)\).

b. Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) là \(45^\circ \).

Ta có

\(AM \bot BC\)

\(SM \bot BC\) \(\left( {BC \bot \left( {SAM} \right)} \right)\)

Suy ra \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,AM} \right) = \widehat {SMA}\)

Xét tam giác \(SAM\) vuông tại \[A\], ta có:

\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1\)

Vậy \(\widehat {SMA} = 45^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Các cặp cạnh đối của tứ diện luôn vuông góc.              
Đúng
Sai
b) \[DO\] vuông góc với \[(ABC)\].              
Đúng
Sai
c) \[AD\] vuông góc với \[(ABC)\].              
Đúng
Sai
d) \[DO\] vuông góc với \[BC\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP