Một nhóm thám hiểm muốn dựng một cái lều để nghỉ qua đêm như hình.

Biết rằng tấm bạt trải để che phía trên có kích thước dài 8m rộng 5m và được gập đôi sao cho lều dài 8m. Biết rằng lều sẽ đứng vững nhất khi hai mặt bên của lều tạo với mặt đất một góc \(45^\circ \). Tính thể tích của lều?

Biết rằng tấm bạt trải để che phía trên có kích thước dài 8m rộng 5m và được gập đôi sao cho lều dài 8m. Biết rằng lều sẽ đứng vững nhất khi hai mặt bên của lều tạo với mặt đất một góc \(45^\circ \). Tính thể tích của lều?
Quảng cáo
Trả lời:

Giả sử lăng trụ đứng \(ABC.DEF\) có cùng kích thước với cái lều cần dựng. Khi đó,
\(AB = BC = \frac{5}{2}m,AD = CF = 8m.\)
Theo bài ra, ta có: \(\left[ {\left( {BCFE} \right),\left( {ACFD} \right)} \right] = \left( {BC,AC} \right) = \widehat {ACB} = 45^\circ \).
Suy ra \(\Delta ABC\) vuông tại \(B\).
Vậy thể tích của lều là \(V = S.h = \frac{1}{2}.AB.BC.AD = \frac{1}{2}.\frac{5}{2}.\frac{5}{2}.8 = 25{m^2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A

Giả sử hình chóp \(S.ABCD\) có cùng kích thước với Kim tự tháp kính Louvre.
Gọi \(O\) là tâm hình vuông \[ABCD\] và \(N\) là trung điểm \(CD\). Từ \(O\) hạ đường vuông góc xuống \(SN\).
Ta có: \[\left. \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right\} \Rightarrow CD \bot \left( {SON} \right)\] \( \Rightarrow CD \bot OM\).
Mà: \(OM \bot SN\).
Nên: \(OM \bot \left( {SCD} \right)\).
Suy ra: \(OM = d\left[ {O;\left( {SCD} \right)} \right]\) là khoảng cách ngắn nhất để căng dây.
Xét \(\Delta SON\) vuông tại O: \(SO = 20,6m\) và \(ON = \frac{{35}}{2}m\).
\(\frac{1}{{O{M^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\) \( \Rightarrow OM \simeq 13,34m\)
Câu 2
Lời giải
a) Sai.
Đáy lều là hình vuông, có diện tích là : \[S = 16\;\left( {{m^2}} \right).\]
Lều có chiều cao: \[h = 3\;\left( {\rm{m}} \right).\]
Thể tích của lều là: \[V = \frac{1}{3}S.h = \frac{1}{3}.16.3 = 16\;\left( {{{\rm{m}}^3}} \right).\]
b) Đúng.
Thể tích của khối lập phương là: \[{V_1} = {3^3} = 27\;\left( {{{\rm{m}}^3}} \right).\]
c) Sai.
Khi lều có cạnh đáy bằng \[a\] và chiều cao bằng \[h\] thì thể tích của lều là \[V = \frac{1}{3}{a^2}h.\]
Khi \[a\] tăng lên gấp đôi và \[h\] không đổi thì thể tích lều bằng \[\frac{1}{3}{\left( {2a} \right)^2}.h = 4\left( {\frac{1}{3}.{a^2}.h} \right) = 4V.\]
d) Đúng.
Khi \[h\] giảm một nửa và \[a\] không đổi thì thì thể tích lều bằng \[\frac{1}{3}{a^2}.\left( {\frac{h}{2}} \right) = \frac{1}{2}\left( {\frac{1}{3}.{a^2}.h} \right) = \frac{V}{2}.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
