Ông Nam gởi \(100\) triệu đồng vào ngân hàng theo thể thức lãi kép kì hạn \(1\) năm với lãi suất là \(12\% \) một năm. Sau \(n\) năm ông Nam rút toàn bộ số tiền (cả vốn lẫn lãi). Tìm số nguyên dương \(n\) nhỏ nhất để số tiền lãi nhận được lớn hơn \(40\) triệu đồng (giả sử lãi suất hàng năm không thay đổi)?
Quảng cáo
Trả lời:
Gọi \({T_n}\) là tiền vốn lẫn lãi sau \(t\) tháng, \(a\) là số tiền ban đầu
Tháng 1 \(\left( {t = 1} \right)\): \({T_1} = a\left( {1 + r} \right)\)
Tháng 2 \(\left( {t = 2} \right)\): \({T_2} = a{\left( {1 + r} \right)^2}\)
……………….
Tháng \(n\left( {t = n} \right):{T_n} = a{\left( {1 + r} \right)^t}\)
\({T_n} = a{\left( {1 + r} \right)^t} \Rightarrow t = \frac{{\ln \frac{{{T_n}}}{a}}}{{\ln \left( {1 + r} \right)}} = \frac{{\ln \frac{{140}}{{100}}}}{{\ln \left( {1 + 1\% } \right)}} \approx 33,815\) (tháng)
Để số tiền lãi nhận được lớn hơn 40 triệu thì \(n > \frac{t}{{12}} \approx 2,818\)
Vậy \(n = 3.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn A

Giả sử hình chóp \(S.ABCD\) có cùng kích thước với Kim tự tháp kính Louvre.
Gọi \(O\) là tâm hình vuông \[ABCD\] và \(N\) là trung điểm \(CD\). Từ \(O\) hạ đường vuông góc xuống \(SN\).
Ta có: \[\left. \begin{array}{l}CD \bot SO\\CD \bot ON\end{array} \right\} \Rightarrow CD \bot \left( {SON} \right)\] \( \Rightarrow CD \bot OM\).
Mà: \(OM \bot SN\).
Nên: \(OM \bot \left( {SCD} \right)\).
Suy ra: \(OM = d\left[ {O;\left( {SCD} \right)} \right]\) là khoảng cách ngắn nhất để căng dây.
Xét \(\Delta SON\) vuông tại O: \(SO = 20,6m\) và \(ON = \frac{{35}}{2}m\).
\(\frac{1}{{O{M^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\) \( \Rightarrow OM \simeq 13,34m\)
Lời giải

Ta giả sử các cạnh và đỉnh của kim tự tháp như hình vẽ. Vì \[S.ABCD\] hình chóp tứ giác đều nên \[SH\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\]. (\(H = AC \cap BD\) )
Xét \({\rm{\Delta ABC}}\) vuông tại \(B\), ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{262}^2} + {{262}^2}} = 262\sqrt 2 \) (m)
\( \Rightarrow HC = \frac{{AC}}{2} = 131\sqrt 2 \) (m)
Xét \({\rm{\Delta SHC}}\) vuông tại \[H\], ta có: \(SH = \sqrt {S{C^2} - H{C^2}} = \sqrt {{{230}^2} - {{(131\sqrt 2 )}^2}} = \sqrt {18578} \approx 136\)(m). Vậy chiều cao của kim tự tháp là khoảng 136 mét.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
