Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
A. \(\frac{{3a}}{2}\).
C. \(\frac{{3a\sqrt 2 }}{2}\).
D. \(\frac{{3a}}{4}\).
Quảng cáo
Trả lời:
Gọi \[M\]là trung điểm của \[AC\] \[ \Rightarrow AC \bot OM\]\[ \Rightarrow \] \[OM\] là đường vuông góc chung của \[AC\] và \[OB\], \[AC = 3a\sqrt 2 \]\[ \Rightarrow OM = \frac{{3a\sqrt 2 }}{2}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\left( { - \infty ;\,2} \right) \cup \left( {3;\, + \infty } \right)\).
Lời giải
\({\log _{\frac{1}{2}}}\left( {{x^2} - x + 7} \right) > 0\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5x + 7 > 0\\{x^2} - 5x + 7 < 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\forall x \in \mathbb{R}\\{x^2} - 5x + 6 < 0\end{array} \right.\)\( \Rightarrow x \in \left( {2;\,3} \right)\).
Câu 2
A. \({2^{30}} < {3^{20}}\).
B. \({0,99^\pi } > {0,99^e}\).
Lời giải
Ta có: \(\pi > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\cos \alpha = \frac{{\sqrt 2 }}{8}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[y = {\log _2}x + 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
