Câu hỏi:

16/12/2025 8 Lưu

 Cho hình chóp \[S.ABC\] có \[SA\] vuông góc mặt đáy, tam giác \[ABC\] vuông tại \[A\], \[SA = 2{\rm{cm}}\], \[AB = 4{\rm{cm}}\], \[AC = 3{\rm{cm}}\]. Tính thể tích khối chóp \(S.ABC\).

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).   

B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  

C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  

D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
 Cho hình chóp S.ABC có SA vuông góc mặt đáy, tam giác ABC vuông tại A, SA = 2cm, AB = 4cm, AC = 3cm. Tính thể tích khối chóp S.ABC. (ảnh 1)

\({V_{S.ABC}} = \frac{1}{3}.SA.{S_{\Delta ABC}} = \frac{1}{3}.2.\frac{1}{2}.4.3 = 4\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({2^{30}} < {3^{20}}\). 

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\).
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Câu 2

A. \(\left( { - \infty ;\,2} \right) \cup \left( {3;\, + \infty } \right)\).

B. \(\left( { - \infty ;\,2} \right)\).
C. \(\left( {2;\,3} \right)\). 
D. \(\left( {3;\, + \infty } \right)\).

Lời giải

\({\log _{\frac{1}{2}}}\left( {{x^2} - x + 7} \right) > 0\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5x + 7 > 0\\{x^2} - 5x + 7 < 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\forall x \in \mathbb{R}\\{x^2} - 5x + 6 < 0\end{array} \right.\)\( \Rightarrow x \in \left( {2;\,3} \right)\).

Câu 3

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
Đúng
Sai
b) \(2y + y'.{\rm{tan}}x = 0\).
Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{4}\). 
B. \(\frac{2}{3}\).
C. \(\frac{3}{8}\). 
D. \(\frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[y = {\log _2}x + 1\].

B. \[y = {\log _2}\left( {x + 1} \right)\].  
C. \[y = {\log _3}x\]. 
D. \[y = {\log _3}\left( {x + 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP