Câu hỏi:

16/12/2025 5 Lưu

Một quần thể của loài ong mật lớn lên tại một nhà nuôi ong bắt đầu với \[50\]con ong, tại thời điểm \[t\] số lượng ong của quần thể này được mô hình hóa bởi công thức:\[P\left( t \right) = \frac{{7520}}{{1 + 1503{{\rm{e}}^{ - 0,5932\,t}}}}\]. trong đó \[t\]là thời gian được tính bằng tuần. Hỏi sau bao lâu thì quần thể ong có tốc độ phát triển nhanh nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \[12,332\] tuần

Lời giải

Ta có: \[P'\left( t \right) = \frac{{7520.1503.0,5932.{e^{ - 0,5932t}}}}{{1 + 1503{{\rm{e}}^{ - 0,5932\,t}}}}\].

\[P''\left( t \right) = \frac{{7520.1503.{{(0,5932)}^2}.{e^{ - 0,5932t}}\left( { - 1 + 1503{{\rm{e}}^{ - 0,5932\,t}}} \right)}}{{{{\left( {1 + 1503{{\rm{e}}^{ - 0,5932\,t}}} \right)}^3}}}\].

\[ \Rightarrow P''\left( t \right) = 0 \Leftrightarrow 1503{{\rm{e}}^{ - 0,5932\,t}} = 1 \Leftrightarrow {{\rm{e}}^{ - 0,5932\,t}} = \frac{1}{{1503}} \Leftrightarrow t = \frac{{\ln 1503}}{{0,5932}} \approx 12,332\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({2^{30}} < {3^{20}}\). 

B. \({0,99^\pi } > {0,99^e}\).

C. \({\log _{{a^2} + 2}}\left( {{a^2} + 1} \right) \ge 0\).
D. \({4^{ - \sqrt 3 }}\)<\({4^{ - \sqrt 2 }}\).

Lời giải

Ta có: \(\pi  > e\) và \(0,999 < 1\) nên \({0,99^\pi } < {0,99^e}\), do đó đáp án B sai.

Câu 2

A. \(\left( { - \infty ;\,2} \right) \cup \left( {3;\, + \infty } \right)\).

B. \(\left( { - \infty ;\,2} \right)\).
C. \(\left( {2;\,3} \right)\). 
D. \(\left( {3;\, + \infty } \right)\).

Lời giải

\({\log _{\frac{1}{2}}}\left( {{x^2} - x + 7} \right) > 0\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5x + 7 > 0\\{x^2} - 5x + 7 < 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{\left( {x - \frac{5}{2}} \right)^2} + \frac{3}{4} > 0,\,\forall x \in \mathbb{R}\\{x^2} - 5x + 6 < 0\end{array} \right.\)\( \Rightarrow x \in \left( {2;\,3} \right)\).

Câu 3

a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
Đúng
Sai
b) \(2y + y'.{\rm{tan}}x = 0\).
Đúng
Sai
c) \(4y - y'' = 2\).
Đúng
Sai
d) \(4y' + y''' = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).   

B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  

C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  

D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{4}\). 
B. \(\frac{2}{3}\).
C. \(\frac{3}{8}\). 
D. \(\frac{1}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = {\log _2}x + 1\].

B. \[y = {\log _2}\left( {x + 1} \right)\].  
C. \[y = {\log _3}x\]. 
D. \[y = {\log _3}\left( {x + 1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP