Câu hỏi:

16/12/2025 16 Lưu

 Người ta muốn xây một chiếc bể chứa nước có hình dạng là một khối hộp chữ nhật không nắp có thể tích bằng \(\frac{{500}}{3}\;{{\rm{m}}^{\rm{3}}}\). Biết đáy hồ là một hình chữ nhật có chiều rộng là \(x\;({\rm{m)}}\), \(x > 0\), chiều dài gấp đôi chiều rộng, chiều cao là \(h\;({\rm{m)}}\) và giá thuê thợ xây là \(100.000\) đồng/\({{\rm{m}}^{\rm{2}}}\).

a) Biểu thức liên hệ giữa \(x\)\(h\)\({x^2}.h = 250\).
Đúng
Sai
b) Công thức tính diện tích xung quanh của hồ và đáy bể là \[S = \frac{{500}}{x} + {x^2}\,\,\left( {x > 0} \right)\]
Đúng
Sai
c) Khi chiều rộng \(x = 10{\rm{ }}(m)\) thì chiều cao của bể chứa nước là \(h = 5\;({\rm{m)}}\).
Đúng
Sai
d) Khi \(x\; = 5{\rm{ }}({\rm{m)}}\) thì chi phí thuê nhân công là \(15\) triệu đồng.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai: Vì thể tích bể nước bằng \[V = 2{x^2}.h = \frac{{500}}{3} \Leftrightarrow 3{x^2}h = 250\].

b) Sai: Vì \[3{x^2}h = 250 \Leftrightarrow h = \frac{{250}}{{3{x^2}}}\].

Khi đó diện tích xung quanh hồ và đáy bể là \[S = 6x.h + 2{x^2} = \frac{{500}}{x} + 2{x^2}\,\,\left( {x > 0} \right)\]

c) Sai: Vì khi \(x\; = 10{\rm{ }}({\rm{m)}}\) thì \[{3.10^2}h = 250 \Leftrightarrow h = \frac{5}{6}{\rm{ }}\left( m \right)\]

d) Đúng: Vì khi \(x\; = 5{\rm{ }}({\rm{m)}}\) thì chi phí thuê nhân công là \(150.100000 = 15000000\) đồng.

Tức là \(15\) triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tỉ lệ tăng trưởng mỗi giờ của vi khuẩn là \[\frac{{\ln 3}}{5}\].
Đúng
Sai
b) Số lượng vi khuẩn đạt được sau \[20\] phút là \[300.{e^{\frac{{\ln 3}}{{15}}}}\]
Đúng
Sai
c) Thời gian tăng trưởng để số lượng vi khuẩn ban đầu sẽ tăng gấp đôi gần với kết quả \[3\] giờ \[9\] phút.
Đúng
Sai
d) Sau \[10\] giờ ta có số lượng vi khuẩn tăng lên gấp \[10\] lần so với số lượng vi khuẩn ban đầu.
Đúng
Sai

Lời giải

a) Đúng: Vì: \[S = A.{e^{r.t}}\] \[ \Rightarrow 300 = 100.{e^{r.5}} \Leftrightarrow r = \frac{{\ln 3}}{5}\].

b) Sai: Vì \[20\] phút \[ = \frac{1}{3}\] giờ; \[S = A.{e^{r.t}} = 100.{e^{\frac{{\ln 3}}{5}.\frac{1}{3}}} = 100.{e^{\frac{{\ln 3}}{{15}}}}\].

c) Đúng: Vì từ 100 con, để có 200 con ta có: \[200 = 100.{e^{\frac{{\ln 3}}{5}.t}} \Leftrightarrow t = 5.\frac{{\ln 2}}{{\ln 3}} \approx 3,15\] giờ

Tức là gần với kết quả là \[3\] giờ \[9\] phút.

d) Sai: Vì \[S = 100.{e^{\frac{{\ln 3}}{5}.10}} = 100.{e^{2\ln 3}} = 900\] con (< 1000 con).

Lời giải

Sau \(n\) năm, số tiền người gửi nhận được là \(A = {10^8}.1,{06^n}\).

Để nhận được số tiền hơn \[300\] triệu thì

\(A > {3.10^8} \Leftrightarrow {10^8}.1,{06^n} > {3.10^8} \Leftrightarrow 1,{06^n} > 3 \Leftrightarrow n > {\log _{1,06}}3 \approx 18,85\).

Vậy ít nhất sau \(19\) năm thì người đó nhận được số tiền nhiều hơn \[300\] triệu.

Câu 4

A. \[\left( {SBC} \right) \bot \left( {SOA} \right)\].                    
B. \[\left( {SBD} \right) \bot \left( {SAC} \right)\].                               
C. \[\left( {SCD} \right) \bot \left( {SOA} \right)\].                    
D. \[\left( {SCD} \right) \bot \left( {SAD} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(15\).                    
B. \(90\).                  
C. \(10\).                         
D. \(30\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP