Câu hỏi:

16/12/2025 104 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\]. Tính tổng \(S\) các nghiệm thực của phương trình trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điều kiện: \(\left\{ \begin{array}{l}x > 1\\x \ne 3\end{array} \right.\).

\[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\]\[ \Leftrightarrow {\log _2}{\left( {2x - 2} \right)^2} + {\log _2}{\left( {x - 3} \right)^2} = 2\]

\[ \Leftrightarrow {\log _2}{\left[ {\left( {2x - 2} \right)\left( {x - 3} \right)} \right]^2} = 2\]\[ \Leftrightarrow {\left( {2{x^2} - 8x + 6} \right)^2} = {2^2}\]

\[ \Leftrightarrow \left[ \begin{array}{l}2{x^2} - 8x + 6 = 2\\2{x^2} - 8x + 6 =  - 2\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 4x + 2 = 0\,\,\left( 1 \right)\,\,\,\,\\{x^2} - 4x + 4 = 0\,\,\left( 2 \right)\end{array} \right.\].

Ta có:

\(\left( 1 \right) \Leftrightarrow \,\left[ \begin{array}{l}x = 2 + \sqrt 2 \\x = 2 - \sqrt 2 \,\,(l)\end{array} \right.\).\(\)

\(\left( 2 \right) \Leftrightarrow \,x = 2\).

Tập nghiệm của phương trình là: \[\left\{ {2;\,2 + \sqrt 2 } \right\}\].

Vậy tổng các nghiệm của là: \[S = 2 + 2 + \sqrt 2  = 4 + \sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(6579,66\left( {{m^3}} \right)\).        
B. \(7299,90\left( {{m^3}} \right)\).             
C. \(6326,60\left( {{m^3}} \right)\).             
D. \(6083,26\left( {{m^3}} \right)\).

Lời giải

Chọn C

Sau 6 năm, khu rừng đó sẽ có mét khối gỗ là \({P_6} = 5.\,{10^3}\,.{\left( {1 + 0,04} \right)^6} \approx 632660\left( {{m^3}} \right)\).

Câu 2

a) Tỉ lệ tăng trưởng mỗi giờ của vi khuẩn là \[\frac{{\ln 3}}{5}\].
Đúng
Sai
b) Số lượng vi khuẩn đạt được sau \[20\] phút là \[300.{e^{\frac{{\ln 3}}{{15}}}}\]
Đúng
Sai
c) Thời gian tăng trưởng để số lượng vi khuẩn ban đầu sẽ tăng gấp đôi gần với kết quả \[3\] giờ \[9\] phút.
Đúng
Sai
d) Sau \[10\] giờ ta có số lượng vi khuẩn tăng lên gấp \[10\] lần so với số lượng vi khuẩn ban đầu.
Đúng
Sai

Lời giải

a) Đúng: Vì: \[S = A.{e^{r.t}}\] \[ \Rightarrow 300 = 100.{e^{r.5}} \Leftrightarrow r = \frac{{\ln 3}}{5}\].

b) Sai: Vì \[20\] phút \[ = \frac{1}{3}\] giờ; \[S = A.{e^{r.t}} = 100.{e^{\frac{{\ln 3}}{5}.\frac{1}{3}}} = 100.{e^{\frac{{\ln 3}}{{15}}}}\].

c) Đúng: Vì từ 100 con, để có 200 con ta có: \[200 = 100.{e^{\frac{{\ln 3}}{5}.t}} \Leftrightarrow t = 5.\frac{{\ln 2}}{{\ln 3}} \approx 3,15\] giờ

Tức là gần với kết quả là \[3\] giờ \[9\] phút.

d) Sai: Vì \[S = 100.{e^{\frac{{\ln 3}}{5}.10}} = 100.{e^{2\ln 3}} = 900\] con (< 1000 con).

Câu 4

A. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 1).                        
B. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 2).                   
C. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 3).                                 
D. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(112,27\;cm{\rm{. }}\)                        
B. \(112,28cm{\rm{. }}\)                               
C. \(121,28\;cm{\rm{. }}\)                             
D. \(211,28cm{\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left( {SBC} \right) \bot \left( {SOA} \right)\].                    
B. \[\left( {SBD} \right) \bot \left( {SAC} \right)\].                               
C. \[\left( {SCD} \right) \bot \left( {SOA} \right)\].                    
D. \[\left( {SCD} \right) \bot \left( {SAD} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP