Câu hỏi:

16/12/2025 59 Lưu

Một người gửi \[100\] triệu đồng vào một ngân hàng với lãi suất \(6\% \)/ năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi ít nhất bao nhiêu năm người đó nhận được số tiền nhiều hơn \[300\] triệu bao gồm cả gốc lẫn lãi?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Sau \(n\) năm, số tiền người gửi nhận được là \(A = {10^8}.1,{06^n}\).

Để nhận được số tiền hơn \[300\] triệu thì

\(A > {3.10^8} \Leftrightarrow {10^8}.1,{06^n} > {3.10^8} \Leftrightarrow 1,{06^n} > 3 \Leftrightarrow n > {\log _{1,06}}3 \approx 18,85\).

Vậy ít nhất sau \(19\) năm thì người đó nhận được số tiền nhiều hơn \[300\] triệu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(6579,66\left( {{m^3}} \right)\).        
B. \(7299,90\left( {{m^3}} \right)\).             
C. \(6326,60\left( {{m^3}} \right)\).             
D. \(6083,26\left( {{m^3}} \right)\).

Lời giải

Chọn C

Sau 6 năm, khu rừng đó sẽ có mét khối gỗ là \({P_6} = 5.\,{10^3}\,.{\left( {1 + 0,04} \right)^6} \approx 632660\left( {{m^3}} \right)\).

Lời giải

Ta chứng minh được tổng số tiền bác Minh thu được cả vốn và lãi sau \(n\) năm là:\({A_n} = A.{\left( {1 + 0,065} \right)^n}\).

Bác Minh thu được tối thiểu \(350\) triệu đồng (cả vốn và lãi) là số \(n\) nhỏ nhất thỏa mãn bất phương trình: \(350 \le 200.{\left( {1,065} \right)^n} \Leftrightarrow {\left( {1,065} \right)^n} \ge \frac{7}{4}\)\( \Leftrightarrow n \ge {\log _{1,065}}\frac{7}{4} \approx 8,89 \Rightarrow {n_0} = 9\).

Vậy sau ít nhất \[9\] năm thì bác An thu được số tiền \(350\) triệu đồng.

Câu 3

a) Tỉ lệ tăng trưởng mỗi giờ của vi khuẩn là \[\frac{{\ln 3}}{5}\].
Đúng
Sai
b) Số lượng vi khuẩn đạt được sau \[20\] phút là \[300.{e^{\frac{{\ln 3}}{{15}}}}\]
Đúng
Sai
c) Thời gian tăng trưởng để số lượng vi khuẩn ban đầu sẽ tăng gấp đôi gần với kết quả \[3\] giờ \[9\] phút.
Đúng
Sai
d) Sau \[10\] giờ ta có số lượng vi khuẩn tăng lên gấp \[10\] lần so với số lượng vi khuẩn ban đầu.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 1).                        
B. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 2).                   
C. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 3).                                 
D. Câu 3.	Tập nghiệm của phương trình   là A.  .	B.  .	C.  .	D.  . (ảnh 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) AB vuông góc với CD.
Đúng
Sai
b) Góc giữa cạnh AD và mặt phẳng (BCD) là \(\widehat {ADB}\).
Đúng
Sai
c) Số mặt phẳng đối xứng của tứ diện đều nói trên là 3 mặt phẳng.
Đúng
Sai
d) Mặt phẳng (ADG) là mặt phẳng trung trực của cạnh BC.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP