Câu hỏi:

18/12/2025 5 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Một cửa hàng đồ chơi có 8 loại ô tô khác nhau, 7 loại máy bay khác nhau và \(10\) món đồ chơi xếp hình khác nhau. Bạn Minh muốn mua hai món đồ chơi khác loại. Hỏi có bao nhiêu cách?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trường hợp 1: Chọn mua ô tô và máy bay

Chọn mua ô tô có 8 cách.

Chọn mua máy bay có 7 cách.

Theo quy tắc nhân có \(7.8 = 56\) cách chọn một ô tô và một máy bay.

Trường hợp 2: Chọn mua ô tô và đồ chơi xếp hình

Chọn mua ô tô có 8 cách.

Chọn mua đồ chơi xếp hình có 10 cách.

Theo quy tắc nhân có \(8.10 = 80\) cách chọn một ô tô và một món đồ chơi xếp hình.

Trường hợp 3: Chọn mua máy bay và đồ chơi xếp hình

Chọn mua máy bay có 7 cách.

Chọn mua đồ chơi xếp hình có 10 cách.

Theo quy tắc nhân có \(7.10 = 70\) cách chọn một máy bay và một món đồ chơi xếp hình.

Vậy theo quy tắc cộng có \(56 + 70 + 80 = 206\) cách mua hai món đồ chơi khác loại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Số trung bình của mẫu số liệu là \(24501,3\).
Đúng
Sai
b) Mốt của mẫu số liệu là \(20120\).
Đúng
Sai
c) Trung vị của mẫu số liệu là \(21315\).
Đúng
Sai
d) Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Mỹ Đình thì mốt của mẫu số liệu không thay đổi.
Đúng
Sai

Lời giải

a) Sai: Số trung bình của mẫu số liệu là

\(\overline x  = \frac{{20120 + 21315 + 23405 + 20120 + 37546}}{5} = 24501,2\)

b) Đúng: Giá trị \(20120\) có tần số xuất hiện nhiều nhất do đó mốt của mẫu số liệu là \({M_o} = 20120\)

c) Đúng: Sắp xếp số liệu theo thứ tự không giảm \(20120\,\,\,20120\,\,\,21315\,\,\,23405\,\,\,37546\).Trung vị của mẫu số liệu là \({M_e} = 21315\)

d) Đúng: Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Mỹ Đình. Khi đó sắp xếp số liệu theo thứ tự không giảm \(20120\,\,\,20120\,\,\,21315\,\,\,23405\,\,\,\).

Mốt của mẫu số liệu là \({M_o} = 20120\)

Lời giải

Sắp xếp các giá trị này theo thứ tự không giảm:

\[7\;\;\;\;\,\,\,\;8\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\;\;\;\;\;\;\;15\;\;\;\;\;\;\;18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\]

Vì \(n = 9\) là số lẻ nên \({Q_2}\) là giá trị ở chính giữa: \({Q_2} = 15\)

Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\):

\[7\;\;\;\;\,\,\,\,\,\;8\;\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\].

và ta tìm được \({Q_1} = \left( {8 + 11} \right):2 = 9,5\).

Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\):

\[18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\].

và tìm được \({Q_3} = \left( {19 + 20} \right):2 = 19,5\).

Vậy khoảng tứ phân vị cho mẫu số liệu là: \({\Delta _Q} = 19,5 - 9,5 = 10\).

Câu 3

A. \(1.\)                      
B. \( - 1.\)                 
C. \({2^8}.\)                                  
D. \(2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\sqrt 2 \).            
B. \(\sqrt {10} \).     
C. \(\frac{{\sqrt 2 }}{2}\).                              
D. \(\frac{{\sqrt {10} }}{{10}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({y^2} = 2x\).      
B. \({y^2} = 4x\).    
C. \(y = 4{x^2}\).                    
D. \({y^2} = 8x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[( - 6; - 2)\].         
B. \[( - 1; - 1)\].       
C. \[\left( {3;1} \right)\].           
D. \[\left( {0;0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP