Câu hỏi:

18/12/2025 39 Lưu

Trong mặt phẳng với hệ tọa độ \[Oxy\],cho tam giác \(ABC\) nội tiếp đường tròn tâm \(I\left( {1;0} \right)\), bán kính \(R = 5\). Chân các đường cao kẻ từ \(B,C\) lần lượt là \(H\left( {3;1} \right),K\left( {0; - 3} \right)\). Tính bình phương bán kính đường tròn ngoại tiếp tứ giác \(BCHK\), biết rằng điểm A có tung độ dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trong mặt phẳng với hệ tọa độ \[Oxy\],cho t (ảnh 1)

Đường tròn \(\left( C \right)\) ngoại tiếp tam giác \(ABC\)có phương trình là: \({\left( {x - 1} \right)^2} + {y^2} = 25\).

Tứ giác\(BCHK\) nội tiếp đường tròn đường kính \(BC\) (vì \(\widehat {BHC} = \widehat {BKC} = {90^0}\)).

Dựng tiếp tuyến của đường tròn \(\left( C \right)\) tại \(A.\) Ta có \[\widehat {CAx} = \widehat {CBA} = \] sđ \(\left( 1 \right)\)

Mặt khác: \[\widehat {CBA} = \widehat {AHK}\] (Vì tứ giác \(BCHK\) nội tiếp) \(\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {CAx} = \widehat {AHK}\]. Vậy \[HK//Ax\], nên \[HK \bot AI\].

Đường thẳng \(AI\) đi qua \(I\) và nhận \(\overrightarrow {HK} \) làm véc tơ pháp tuyến nên có phương trình là:

\(3\left( {x - 1} \right) + 4y = 0 \Leftrightarrow 3x + 4y - 3 = 0\).

Tọa độ điểm \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}3x + 4y - 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow A\left( { - 3;3} \right)\) (vì \(A\)có tung độ dương).

Đường thẳng \(AB\) đi qua \(A\) và \(K\) nên có phương trình: \(2x + y + 3 = 0\).

Tọa độ điểm \(B\) là nghiệm của hệ \[\left\{ \begin{array}{l}3x + y + 3 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow B\left( {1; - 5} \right)\] (vì \(B\) khác \(A\)).

Đường thẳng \(AC\)đi qua \(A\) và \(H\) nên có phương trình: \(x + 3y - 6 = 0\).

Tọa độ điểm \(C\) là nghiệm của hệ \[\left\{ \begin{array}{l}x + 3y - 6 = 0\\{\left( {x - 1} \right)^2} + {y^2} = 25\end{array} \right. \Rightarrow C\left( {6;0} \right)\] (vì \(C\) khác\(A\)).

Vậy đường tròn ngoại tiếp tứ giác \[BCHK\] có đường kính \(BC\) bằng \(\frac{{25}}{2} = 12,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sắp xếp các giá trị này theo thứ tự không giảm:

\[7\;\;\;\;\,\,\,\;8\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\;\;\;\;\;\;\;15\;\;\;\;\;\;\;18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\]

Vì \(n = 9\) là số lẻ nên \({Q_2}\) là giá trị ở chính giữa: \({Q_2} = 15\)

Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\):

\[7\;\;\;\;\,\,\,\,\,\;8\;\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\].

và ta tìm được \({Q_1} = \left( {8 + 11} \right):2 = 9,5\).

Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\):

\[18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\].

và tìm được \({Q_3} = \left( {19 + 20} \right):2 = 19,5\).

Vậy khoảng tứ phân vị cho mẫu số liệu là: \({\Delta _Q} = 19,5 - 9,5 = 10\).

Câu 2

A. \(\left( {3;\,4} \right)\).                         
B. \(\left( {1;\,3} \right)\).         
C. \(\left[ {6;\,11} \right]\).                    
D. \(\left( {0;\,\frac{3}{4}} \right)\).

Lời giải

Số trung bình cộng của mẫu số liệu là: \(\overline x  = \frac{{25 + 26 + 28 + 31 + 33 + 33 + 27}}{7} = 29\)

Phương sai của mẫu số liệu là: \[{s^2} = \frac{{{{\left( {25 - 29} \right)}^2} + {{\left( {26 - 29} \right)}^2} + {{\left( {28 - 29} \right)}^2} + {{\left( {31 - 29} \right)}^2} + {{\left( {33 - 29} \right)}^2} + {{\left( {33 - 29} \right)}^2} + {{\left( {27 - 29} \right)}^2}}}{7} = 9,43\]

Độ lệch chuẩn cần tính là: \(s \approx \sqrt {9,43}  \approx 3,07\).

Câu 3

a) Số trung bình của mẫu số liệu là \(24501,3\).
Đúng
Sai
b) Mốt của mẫu số liệu là \(20120\).
Đúng
Sai
c) Trung vị của mẫu số liệu là \(21315\).
Đúng
Sai
d) Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Mỹ Đình thì mốt của mẫu số liệu không thay đổi.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Có \(15\) cách lấy một quyển sách tùy ỳ từ giá sách.
Đúng
Sai
b) Có \(9\) cách lấy một quyển sách Toán hoặc Vật lý từ giá sách.
Đúng
Sai
c) Có \(10\) cách lấy hai quyển sách gồm Toán và Hóa học từ giá sách.
Đúng
Sai
d) Có \(120\) cách lấy ba quyển sách có đủ ba môn học từ giá sách.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{1}{7}\).      
B. \(\frac{8}{{15}}\).     
C. \(\frac{4}{{15}}\).     
D. \(\frac{1}{{14}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 11.                         
B. 33.                       
C. 87.                             
D. 83.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP