Trong một trường THPT có 8 lớp 10, mỗi lớp cử 2 học sinh đi tham gia buổi họp của đoàn trường. Trong buổi họp ban tổ chức cần chọn ra 4 học sinh từ 16 học sinh của khối 10 để phát biểu ý kiến. Có bao nhiêu cách chọn sao cho trong 4 học sinh được chọn có đúng hai học sinh học cùng một lớp.
Trong một trường THPT có 8 lớp 10, mỗi lớp cử 2 học sinh đi tham gia buổi họp của đoàn trường. Trong buổi họp ban tổ chức cần chọn ra 4 học sinh từ 16 học sinh của khối 10 để phát biểu ý kiến. Có bao nhiêu cách chọn sao cho trong 4 học sinh được chọn có đúng hai học sinh học cùng một lớp.
Quảng cáo
Trả lời:
Cách 1.
Để tính số cách chọn được 4 học sinh trong đó có đúng hai học sinh cùng lớp ta thực hiện như sau:
Trường hợp 1: Tính tổng tất cả số cách chọn ra 4 học sinh từ 16 học sinh có \[C_{16}^4 = 1820\]cách.
Trường hợp 2: Tính số cách chọn ra 4 học sinh học trong 2 lớp (hai cặp học sinh cùng lớp) có \[C_8^2 = 28\] cách (Mỗi cách chọn ra 2 lớp học từ 8 lớp học là một cách chọn ra hai cặp học sinh học cùng lớp)
Trường hợp 3: Tính số cách chọn ra 4 học sinh học trong 4 lớp khác nhau có \[C_8^4.2.2.2.2 = 1120\] cách
(Chọn 4 lớp từ 8 lớp có \[C_8^4\] cách, ứng với mỗi cách chọn ra 4 lớp thì mỗi lớp có 2 cách chọn một học sinh)
Từ đó suy ra số cách chọn 4 học sinh trong đó có đúng 2 học sinh học cùng lớp là \[1820 - 28 - 1120 = 672\] cách.
Cách 2: Ta gọi 8 lớp 10 là A1, A2, A3,…, A8.
Chọn 2 học sinh của lớp A1, và chọn 2 học sinh không cùng lớp trong 7 lớp còn lại.
Có 1 cách chọn 2 học sinh lớp A1.
Trong 7 lớp còn lại có tất cả \[C_{14}^2\] cách chọn 2 học sinh trong đó có 7 cách chọn 2 học sinh cùng lớp suy ra trong 7 lớp còn lại có \[C_{14}^2 - 7 = 84\] cách chọn 2 học sinh không cùng lớp
Tương tự cho 7 trường hợp còn lại
Vậy có \[8.1.84 = 672\] cách.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Sai: Số trung bình của mẫu số liệu là
\(\overline x = \frac{{20120 + 21315 + 23405 + 20120 + 37546}}{5} = 24501,2\)
b) Đúng: Giá trị \(20120\) có tần số xuất hiện nhiều nhất do đó mốt của mẫu số liệu là \({M_o} = 20120\)
c) Đúng: Sắp xếp số liệu theo thứ tự không giảm \(20120\,\,\,20120\,\,\,21315\,\,\,23405\,\,\,37546\).Trung vị của mẫu số liệu là \({M_e} = 21315\)
d) Đúng: Nếu bỏ đi số liệu chỗ ngồi của Sân vận động Mỹ Đình. Khi đó sắp xếp số liệu theo thứ tự không giảm \(20120\,\,\,20120\,\,\,21315\,\,\,23405\,\,\,\).
Mốt của mẫu số liệu là \({M_o} = 20120\)
Lời giải
Sắp xếp các giá trị này theo thứ tự không giảm:
\[7\;\;\;\;\,\,\,\;8\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\;\;\;\;\;\;\;15\;\;\;\;\;\;\;18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\]
Vì \(n = 9\) là số lẻ nên \({Q_2}\) là giá trị ở chính giữa: \({Q_2} = 15\)
Ta tìm \({Q_1}\) là trung vị của nửa số liệu bên trái \({Q_2}\):
\[7\;\;\;\;\,\,\,\,\,\;8\;\;\;\;\;\;\;\;11\;\;\;\;\;\;\;13\].
và ta tìm được \({Q_1} = \left( {8 + 11} \right):2 = 9,5\).
Ta tìm \({Q_3}\) là trung vị của nửa số liệu bên phải \({Q_2}\):
\[18\;\;\;\;\;\;\;19\;\;\;\;\;\;\;20\;\;\;\;\;\;\;22\].
và tìm được \({Q_3} = \left( {19 + 20} \right):2 = 19,5\).
Vậy khoảng tứ phân vị cho mẫu số liệu là: \({\Delta _Q} = 19,5 - 9,5 = 10\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.