Câu hỏi:

18/12/2025 4 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - 3;3} \right]\).

a) \(\int\limits_{ - 3}^3 {f\left( x \right)} dx = f\left( 3 \right) - f\left( { - 3} \right)\).
Đúng
Sai
b) \(\int\limits_{ - 3}^3 {\left| {f\left( x \right)} \right|} dx = \int\limits_{ - 3}^0 { - f\left( x \right)dx} + \int\limits_0^3 {f\left( x \right)dx} \).
Đúng
Sai
c) Nếu \(\int\limits_1^2 {f\left( x \right)dx} = 4\)\(\int\limits_1^3 { - f\left( x \right)dx} = 10\) thì \(\int\limits_2^3 {f\left( x \right)dx} = 14\).
Đúng
Sai
d) Nếu \(\int\limits_1^2 {f\left( x \right)dx} = 4\)\(\int\limits_1^2 {\left[ {kx - f\left( x \right)} \right]dx} = - 1\) thì \(k = 5\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) S, d) S

a) \(\int\limits_{ - 3}^3 {f\left( x \right)} dx = F\left( 3 \right) - F\left( { - 3} \right)\).

b) \(\int\limits_{ - 3}^3 {\left| {f\left( x \right)} \right|} dx = \int\limits_{ - 3}^0 {\left| {f\left( x \right)} \right|dx} + \int\limits_0^3 {\left| {f\left( x \right)} \right|dx} \).

c) Có \(\int\limits_1^3 {f\left( x \right)dx} = \int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} \)\( \Rightarrow \int\limits_2^3 {f\left( x \right)dx} = \int\limits_1^3 {f\left( x \right)dx} - \int\limits_1^2 {f\left( x \right)dx} \)

\( \Rightarrow \int\limits_2^3 {f\left( x \right)dx} = - 10 - 4 = - 14\).

d) \(\int\limits_1^2 {\left[ {kx - f\left( x \right)} \right]dx} = \int\limits_1^2 {kxdx} - \int\limits_1^2 {f\left( x \right)dx} \)\( = \left. {\frac{{k{x^2}}}{2}} \right|_1^2 - 4 = \frac{3}{2}k - 4 = - 1 \Rightarrow k = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 43,3

Ta có \(\overrightarrow {AB} = \left( {18;25; - 5} \right)\).

Đường trượt của du khách là một đường thẳng đi qua điểm \(A\left( {3;2,5;15} \right)\) và nhận \(\overrightarrow {AB} = \left( {18;25; - 5} \right)\) làm vectơ chỉ phương có phương trình là:

\(\left\{ \begin{array}{l}x = 3 + 18t\\y = 2,5 + 25t\\z = 15 - 5t\end{array} \right.\).

Khi du khách ở độ cao 12 m tức là \(z = 12 \Leftrightarrow 15 - 5t = 12 \Leftrightarrow t = \frac{3}{5}\).

Với \(t = \frac{3}{5}\) thì \(\left\{ \begin{array}{l}x = 3 + 18.\frac{3}{5}\\y = 2,5 + 25.\frac{3}{5}\\z = 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{69}}{5}\\y = \frac{{35}}{2}\\z = 12\end{array} \right.\).

Suy ra \(M\left( {\frac{{69}}{5};\frac{{35}}{2};12} \right)\). Do đó \(T = \frac{{69}}{5} + \frac{{35}}{2} + 12 = 43,3\).

Lời giải

Trả lời: 2

Theo đề ta có: \(\left\{ \begin{array}{l}{\left( {{x_M} + 1} \right)^2} + {\left( {{y_M} - 6} \right)^2} + {\left( {{z_M} - 3} \right)^2} = 36\\{\left( {{x_M} - 4} \right)^2} + {\left( {{y_M} - 8} \right)^2} + {\left( {{z_M} - 1} \right)^2} = 49\\{\left( {{x_M} - 9} \right)^2} + {\left( {{y_M} - 6} \right)^2} + {\left( {{z_M} - 7} \right)^2} = 144\\{\left( {{x_M} + 15} \right)^2} + {\left( {{y_M} - 18} \right)^2} + {\left( {{z_M} - 7} \right)^2} = 576\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x_M^2 + y_M^2 + z_M^2 + 2{x_M} - 12{y_M} - 6{z_M} = - 10\\x_M^2 + y_M^2 + z_M^2 - 8{x_M} - 16{y_M} - 2{z_M} = - 32\\x_M^2 + y_M^2 + z_M^2 - 18{x_M} - 12{y_M} - 14{z_M} = - 22\\x_M^2 + y_M^2 + z_M^2 + 30{x_M} - 36{y_M} - 14{z_M} = - 22\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x_M^2 + y_M^2 + z_M^2 + 2{x_M} - 12{y_M} - 6{z_M} = - 10\\ - 2{x_M} + 12{y_M} + 6{z_M} - 8{x_M} - 16{y_M} - 2{z_M} = - 22\\ - 2{x_M} + 12{y_M} + 6{z_M} - 18{x_M} - 12{y_M} - 14{z_M} = - 12\\ - 2{x_M} + 12{y_M} + 6{z_M} + 30{x_M} - 36{y_M} - 14{z_M} = - 12\end{array} \right.\)

xM2+yM2+zM2+2xM12yM6zM=1010xM4yM+4zM=2220xM8zM=1228xM24yM8zM=12

\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} = 1\\{y_M} = 2\\{z_M} = - 1\end{array} \right.\). Suy ra \(T = {x_M} + {y_M} + {z_M} = 2\).

Câu 5

a) Mặt phẳng \(\left( P \right)\) đi qua \(A\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến có phương trình \( - x + 2z - 2 = 0\).
Đúng
Sai
b) Mặt phẳng \(\left( Q \right)\) đi qua \(A\) và nhận \(\overrightarrow u ,\overrightarrow v \) làm cặp vectơ chỉ phương có phương trình là \(2x - 4y - z - 3 = 0\).
Đúng
Sai
c) Mặt phẳng đi qua ba điểm \(A,B\left( { - 3;1;2} \right),C\left( {1;0;1} \right)\) có phương trình là \(x - y + 5z - 6 = 0\).
Đúng
Sai
d) Gọi \(M\)là giao điểm của \(\left( P \right)\) và trục \(Ox\), \(N\) là giao điểm của \(\left( Q \right)\) và trục \(Oz\). Mặt phẳng đi qua ba điểm \(A,M,N\) có phương trình là \(3x + 8y + 2z + 6 = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP