Câu hỏi:

24/12/2025 21 Lưu

Trong không gian với hệ tọa độ \[Oxyz\], cho mặt phẳng \(\left( P \right)\) có phương trình là \(x - z - 3 = 0\). Tính góc giữa \(\left( P \right)\) và mặt phẳng \(\left( {Oxy} \right)\).    

A. \(30^\circ \).       
B. \(60^\circ \).       
C. \(45^\circ \). 
D. \(90^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

\(\left( P \right)\) có một véc tơ pháp tuyến \(\overrightarrow n = (1;0; - 1)\)

\(\left( {Oxy} \right)\) có một véc tơ pháp tuyến \(\overrightarrow {n'} = (0;0;1)\)

Do đó \(\cos \left( {\left( P \right),\left( {Oxy} \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n'} } \right)} \right| = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {\left( P \right),\left( {Oxy} \right)} \right) = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      
B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Đáp án đúng là: B

Ta có \({M_1}\left( {0;5;0} \right)\)\({M_2}\left( {2;0;4} \right)\). Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( {2; - 5;4} \right)\).

Đường thẳng \({M_1}{M_2}\)nhận \(\overrightarrow {{M_1}{M_2}} = \overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\) làm một vectơ chỉ phương.

Câu 2

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).

b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).

\(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).

Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).

c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).

d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].

Câu 7

A. \(Q\left( { - 3\,;\, - 2\,;\,1} \right)\).   
B. \(M\left( {4\,;\, - 1\,;\,1} \right)\).          
C. \(N\left( {2\,;\,5\,;\, - 3} \right)\).                      
D. \(P\left( {3\,;\,2\,;\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP