Câu hỏi:

24/12/2025 36 Lưu

Cho \(A,B\) là các biến cố của một phép thử \(T.\) Biết rằng \(P\left( A \right) > 0\)\(0 < P\left( B \right) < 1.\) Xác suất của biến cố \(B\) với điều kiện biến cố \(A\) đã xảy ra được tính theo công thức nào sau đây?    

A. \[P\left( {\left. B \right|A} \right) = \frac{{P\left( A \right).P\left( {\left. A \right|B} \right)}}{{P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right)}}.\]     
B. \[P\left( {\left. B \right|A} \right) = \frac{{P\left( B \right).P\left( {\left. A \right|B} \right)}}{{P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right)}}.\]    
C. \[P\left( {\left. B \right|A} \right) = \frac{{P\left( B \right).P\left( {\left. A \right|B} \right)}}{{P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right)}}.\]      
D. \[P\left( {\left. B \right|A} \right) = \frac{{P\left( A \right).P\left( {\left. A \right|B} \right)}}{{P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\left. B \right|\bar A} \right)}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Theo công thức Bayes, ta có \[P\left( {\left. B \right|A} \right) = \frac{{P\left( B \right).P\left( {\left. A \right|B} \right)}}{{P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right)}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).

b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).

\(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).

Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).

c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).

d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].

Câu 2

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      
B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Đáp án đúng là: B

Ta có \({M_1}\left( {0;5;0} \right)\)\({M_2}\left( {2;0;4} \right)\). Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( {2; - 5;4} \right)\).

Đường thẳng \({M_1}{M_2}\)nhận \(\overrightarrow {{M_1}{M_2}} = \overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\) làm một vectơ chỉ phương.

Câu 3

a) Xác suất của biến cố \(A\)\(\frac{7}{{15}}\).
Đúng
Sai
b) Xác suất của biến cố \(B\)\(0,65\).
Đúng
Sai
c) Xác suất gặp được công nhân không hài lòng với điều kiện làm việc tại phân xưởng biết công nhân đó thuộc xưởng I là \(\frac{{12}}{{35}}\).
Đúng
Sai
d) Xác suất gặp được công nhân thuộc phân xưởng II biết công nhân đó hài lòng với điều kiện làm việc tại phân xưởng là 0,52.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP