Câu hỏi:

18/12/2025 3 Lưu

Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right)\) có phương trình \(x + 2y - z + 3 = 0\) và điểm \(A\left( {1;1;2} \right)\).

a) Tọa độ của một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\(\left( {1;2; - 1} \right)\).
Đúng
Sai
b) Điểm \(A\) thuộc mặt phẳng \(\left( P \right)\).
Đúng
Sai
c) Phương trình mặt cầu tâm \(A\) và có bán kính bằng khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( P \right)\)\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).
Đúng
Sai
d) Gọi \(\left( Q \right)\) là mặt phẳng đi qua điểm \(A\) và song song với mặt phẳng \(\left( P \right)\), mặt phẳng \(\left( Q \right)\) có phương trình là \(x + 2y - z - 1 = 0\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) S, d) Đ

a) Mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;2; - 1} \right)\).

b) Thay tọa độ điểm \(A\left( {1;1;2} \right)\) vào phương trình mặt phẳng \(\left( P \right):x + 2y - z + 3 = 0\) ta được:

\(1 + 2.1 - 2 + 3 = 4 \ne 0\). Do đó điểm \(A \notin \left( P \right)\).

c) \(R = d\left( {A,\left( P \right)} \right) = \frac{{\left| {1 + 2.1 - 2 + 3} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{{\sqrt 6 }}\).

Phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = \frac{{16}}{6} = \frac{8}{3}\).

d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x + 2y - z + D = 0\left( {D \ne 3} \right)\).

Vì \(A \in \left( Q \right)\) nên \(1 + 2.1 - 2 + D = 0 \Leftrightarrow D =  - 1\).

Vậy \(\left( Q \right):x + 2y - z - 1 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      
B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Đáp án đúng là: B

Ta có \({M_1}\left( {0;5;0} \right)\)\({M_2}\left( {2;0;4} \right)\). Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( {2; - 5;4} \right)\).

Đường thẳng \({M_1}{M_2}\)nhận \(\overrightarrow {{M_1}{M_2}} = \overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\) làm một vectơ chỉ phương.

Lời giải

Đáp án đúng là: D

Gọi \(A\) là biến cố “Sản phẩm đó do máy thứ nhất sản xuất”

B là biến cố “Sản phẩm đó đạt tiêu chuẩn”.

Theo đề ta có: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\); \(P\left( {B|A} \right) = 0,9;P\left( {B|\overline A } \right) = 0,85\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,6.0,9 + 0,4.0,85 = 0,88\).

Ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,9}}{{0,88}} \approx 0,614\).

Câu 6

A. \({\left( {x + 4} \right)^2} + {\left( {y + 4} \right)^2} + {z^2} = 27\).                                                
B. \({\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 27\).   
C. \({\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 27\).                                                
D. \({\left( {x - 4} \right)^2} + {\left( {y - 4} \right)^2} + {z^2} = 27\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Xác suất của biến cố \(A\)\(\frac{7}{{15}}\).
Đúng
Sai
b) Xác suất của biến cố \(B\)\(0,65\).
Đúng
Sai
c) Xác suất gặp được công nhân không hài lòng với điều kiện làm việc tại phân xưởng biết công nhân đó thuộc xưởng I là \(\frac{{12}}{{35}}\).
Đúng
Sai
d) Xác suất gặp được công nhân thuộc phân xưởng II biết công nhân đó hài lòng với điều kiện làm việc tại phân xưởng là 0,52.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP