Câu hỏi:

24/12/2025 47 Lưu

Trong 1 đám đông, số người nam bằng số người nữ. Xác suất mắc cận thị của nam là \(0,4\) và nữ là \(0,6\). Chọn ngẫu nhiên 1 người. Xác suất chọn được nam không cận thị (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

0,6

Trả lời: 0,6

Gọi biến cố A “Người được chọn là nam”.

Biến cố B “Người được chọn bị cận thị”.

Theo đề ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5\); \(P\left( {B|A} \right) = 0,4;P\left( {B|\overline A } \right) = 0,6\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,5.0,4 + 0,5.0,6 = 0,5\).

Ta có \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,5;P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,4 = 0,6\).

Suy ra \(P\left( {A|\overline B } \right) = \frac{{P\left( A \right).P\left( {\overline B |A} \right)}}{{P\left( {\overline B } \right)}} = \frac{{0,5.0,6}}{{0,5}} = 0,6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {{u_2}} = \left( { - 2;5;4} \right)\).                      
B. \(\overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\).      
C. \(\overrightarrow {{u_4}} = \left( {2;5;4} \right)\).         
D. \(\overrightarrow {{u_1}} = \left( { - 2; - 5;4} \right)\).

Lời giải

Đáp án đúng là: B

Ta có \({M_1}\left( {0;5;0} \right)\)\({M_2}\left( {2;0;4} \right)\). Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( {2; - 5;4} \right)\).

Đường thẳng \({M_1}{M_2}\)nhận \(\overrightarrow {{M_1}{M_2}} = \overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\) làm một vectơ chỉ phương.

Câu 2

a) \(F'\left( 0 \right) = 0\).
Đúng
Sai
b) \(F\left( 1 \right) = e - 1\).
Đúng
Sai
c) \(\int {F\left( x \right)} dx = {e^x} - \frac{{{x^3}}}{3} + C\).
Đúng
Sai
d) \(\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = \ln \left| x \right|} - 2{e^x} + C\).
Đúng
Sai

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Có \(F'\left( x \right) = f\left( x \right)\). Suy ra \(F'\left( 0 \right) = f\left( 0 \right) = {e^0} - 2.0 = 1\).

b) Có \(F\left( x \right) = \int {\left( {{e^x} - 2x} \right)dx} = {e^x} - {x^2} + C\).

\(F\left( 0 \right) = 1\) nên \(F\left( 0 \right) = {e^0} - 0 + C = 1 \Rightarrow C = 0\).

Do đó \(F\left( x \right) = {e^x} - {x^2}\). Suy ra \(F\left( 1 \right) = {e^1} - {1^2} = e - 1\).

c) \(\int {F\left( x \right)} dx = \int {\left( {{e^x} - {x^2}} \right)dx} = {e^x} - \frac{{{x^3}}}{3} + C\).

d) \[\int {\frac{{f\left( x \right)}}{{x{e^x}}}dx = } \int {\frac{{{e^x} - 2x}}{{x{e^x}}}dx = } \int {\left( {\frac{1}{x} - 2{e^{ - x}}} \right)dx} = \ln \left| x \right| + 2{e^{ - x}} + C\].

Câu 6

A. \(Q\left( { - 3\,;\, - 2\,;\,1} \right)\).   
B. \(M\left( {4\,;\, - 1\,;\,1} \right)\).          
C. \(N\left( {2\,;\,5\,;\, - 3} \right)\).                      
D. \(P\left( {3\,;\,2\,;\, - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP