Câu hỏi:

24/12/2025 51 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một ô tô đang chạy với vận tốc 20 m/s thì người ta nhìn thấy chướng ngại vật nên đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 2t + 20\), trong đó \(t\) là thời gian (tính bằng giây) kể từ lúc đạp phanh.

a) Ô tô dừng lại sau 10 giây.
Đúng
Sai
b) Quãng đường \(s\left( t \right)\) mà xe ô tô đi được trong thời gian \(t\) giây là một nguyên hàm của hàm số \(v\left( t \right)\).
Đúng
Sai
c) Từ thời điểm đạp phanh đến khi dừng lại, ô tô đi được quãng đường là 90 m.
Đúng
Sai
d) Quãng đường mà ô tô đi được trong 15 giây cuối bằng 125 m.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) S, d) S

a) Ô tô dừng lại khi \(v\left( t \right) = - 2t + 20 = 0 \Leftrightarrow t = 10\) giây.

b) Có \(s\left( t \right) = \int {v\left( t \right)dt} \).

c) Quãng đường ô tô đi được từ lúc đạp phanh đến khi dừng là

\(S = \int\limits_0^{10} {\left( { - 2t + 20} \right)dt} = 100\)m.

d) Quãng đường mà ô tô đi được trong 15 giây cuối (bao gồm 5 giây đi với vận tốc 20 m/s và 10 giây đi từ lúc đạp phanh đến khi dừng hẳn) là \(20.5 + 100 = 200\)m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 0

Ta có: \(\int\limits_1^5 {f\left( x \right)} {\rm{d}}x = \int\limits_1^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^3 {f\left( x \right)} {\rm{d}}x + \int\limits_3^4 {f\left( x \right)} {\rm{d}}x + \int\limits_4^5 {f\left( x \right)} {\rm{d}}x\)

\( = \int\limits_1^2 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_2^3 {\left| {f\left( x \right)} \right|} {\rm{d}}x + \int\limits_3^4 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_4^5 {\left| {f\left( x \right)} \right|} {\rm{d}}x\)

\( = {S_{{H_1}}} - {S_{{H_2}}} + {S_{{H_3}}} - {S_{{H_4}}} = \frac{9}{4} - \frac{{11}}{{12}} + \frac{{11}}{{12}} - \frac{9}{4} = 0\).

Lời giải

Trả lời: 425

Dựa vào hình vẽ, ta thấy đồ thị hàm số \(\left( P \right):y = a{x^2} + bx + c\) đi qua các điểm \(\left( {0;40} \right),\left( {50;30} \right),\left( { - 50;30} \right)\) nên ta có hệ

\(\left\{ \begin{array}{l}2500a + 50b + c = 30\\2500a - 50b + c = 30\\c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{250}}\\b = 0\\c = 40\end{array} \right.\). Suy ra \(\left( P \right):y = - \frac{1}{{250}}{x^2} + 40\).

Ta có \(V = \pi \int\limits_{ - 50}^{50} {{{\left( { - \frac{1}{{250}}{x^2} + 40} \right)}^2}dx} \approx 425162\;{\rm{c}}{{\rm{m}}^{\rm{3}}} \approx 425\) lít.

Câu 3

 A. \(\int {\sin x{\rm{d}}x = \cos x + C} \).        
B. \(\int {\frac{1}{{{{\sin }^2}x}}} {\rm{d}}x = - \cot x + C\).    
C. \(\int {\frac{1}{{{{\cos }^2}x}}} {\rm{d}}x = \tan x + C\).    
D. \(\int {\cos x{\rm{d}}x = \sin x + C} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{{\pi ^2}}}{2}\).                      
B. \(2\pi \). 
C. \(\frac{{8\pi - {\pi ^2}}}{2}\).           
D. \(\frac{{{\pi ^2} + 2\pi }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP