Trong một khung lưới ô vuông gồm các hình lập phương, xét các đường thẳng đi qua hai nút lưới (mỗi nút lưới là đỉnh của hình lập phương), người ta đưa ra một cách kiểm tra độ lệch về phương của hai dường thẳng bằng cách gắn hệ tọa độ \(Oxyz\) vào khung lưới ô vuông và tìm vectơ chỉ phương của hai đường thẳng đó. Giả sử, đường thẳng \(a\) đi qua hai nút lưới \(M\left( {1;1;2} \right)\) và \(N\left( {0;3;0} \right)\), đường thẳng \(b\) đi qua hai nút lưới \(P\left( {1;0;3} \right)\) và \[Q\left( {3;3;9} \right)\]. Sau khi làm tròn đến hàng đơn vị của độ thì góc giữa hai đường thẳng \(a\) và \(b\) bằng \(n^\circ \) (\(n\) là số tự nhiên). Giá trị của \(n\) bằng bao nhiêu?
Trong một khung lưới ô vuông gồm các hình lập phương, xét các đường thẳng đi qua hai nút lưới (mỗi nút lưới là đỉnh của hình lập phương), người ta đưa ra một cách kiểm tra độ lệch về phương của hai dường thẳng bằng cách gắn hệ tọa độ \(Oxyz\) vào khung lưới ô vuông và tìm vectơ chỉ phương của hai đường thẳng đó. Giả sử, đường thẳng \(a\) đi qua hai nút lưới \(M\left( {1;1;2} \right)\) và \(N\left( {0;3;0} \right)\), đường thẳng \(b\) đi qua hai nút lưới \(P\left( {1;0;3} \right)\) và \[Q\left( {3;3;9} \right)\]. Sau khi làm tròn đến hàng đơn vị của độ thì góc giữa hai đường thẳng \(a\) và \(b\) bằng \(n^\circ \) (\(n\) là số tự nhiên). Giá trị của \(n\) bằng bao nhiêu?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 68
Ta có: \(\overrightarrow {MN} = \left( { - 1\,;\,2\,;\, - 2} \right),\,\,\overrightarrow {PQ} = \left( {2\,;\,3\,;\,6} \right)\). Khi đó:
\(cos\left( {a\,,\,b} \right) = \frac{{\left| {\overrightarrow {MN} .\overrightarrow {PQ} } \right|}}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {PQ} } \right|}} = \frac{8}{{21}}\), suy ra \(\left( {a\,,\,b} \right) \approx 68^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 0
Ta có: \(\int\limits_1^5 {f\left( x \right)} {\rm{d}}x = \int\limits_1^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^3 {f\left( x \right)} {\rm{d}}x + \int\limits_3^4 {f\left( x \right)} {\rm{d}}x + \int\limits_4^5 {f\left( x \right)} {\rm{d}}x\)
\( = \int\limits_1^2 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_2^3 {\left| {f\left( x \right)} \right|} {\rm{d}}x + \int\limits_3^4 {\left| {f\left( x \right)} \right|} {\rm{d}}x - \int\limits_4^5 {\left| {f\left( x \right)} \right|} {\rm{d}}x\)
\( = {S_{{H_1}}} - {S_{{H_2}}} + {S_{{H_3}}} - {S_{{H_4}}} = \frac{9}{4} - \frac{{11}}{{12}} + \frac{{11}}{{12}} - \frac{9}{4} = 0\).
Lời giải
Trả lời: 425
Dựa vào hình vẽ, ta thấy đồ thị hàm số \(\left( P \right):y = a{x^2} + bx + c\) đi qua các điểm \(\left( {0;40} \right),\left( {50;30} \right),\left( { - 50;30} \right)\) nên ta có hệ
\(\left\{ \begin{array}{l}2500a + 50b + c = 30\\2500a - 50b + c = 30\\c = 40\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{{250}}\\b = 0\\c = 40\end{array} \right.\). Suy ra \(\left( P \right):y = - \frac{1}{{250}}{x^2} + 40\).
Ta có \(V = \pi \int\limits_{ - 50}^{50} {{{\left( { - \frac{1}{{250}}{x^2} + 40} \right)}^2}dx} \approx 425162\;{\rm{c}}{{\rm{m}}^{\rm{3}}} \approx 425\) lít.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

