Trong không gian \(Oxyz\), cho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + 2t\\z = - 5 + t\end{array} \right.\) và mặt phẳng \(\left( P \right):x + y - 5 = 0\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) Đ, d) S
a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
b) Ta có \(\overrightarrow {{n_P}} = \left( {1;1;0} \right),\overrightarrow i = \left( {1;0;0} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) và \(\left( {Oyz} \right)\).
Có \(\cos \left( {\left( P \right),\left( {Oyz} \right)} \right) = \left| {\cos \left( {\overrightarrow {{n_P}} ,\overrightarrow i } \right)} \right| = \frac{1}{{\sqrt 2 }}\). Suy ra \(\left( {\left( P \right),\left( {Oyz} \right)} \right) = 45^\circ \).
c) Đường thẳng \({d_1}\) song song với \(\Delta \) nên nhận \(\overrightarrow u = \left( { - 2;2;1} \right)\) làm vectơ chỉ phương.
Phương trình đường thẳng \({d_1}\) có dạng:\(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}\) .
d) \(d \bot \Delta \)nên \(\overrightarrow {{u_1}} .\overrightarrow u = 0\) mà \(\overrightarrow {{u_1}} .\overrightarrow u = 1.\left( { - 2} \right) + \left( { - 2} \right).2 + 4.1 = - 2 \ne 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có
Mà \(\int\limits_0^1 {\left( {a{e^x} + b} \right)dx} = e + 2\) nên
Câu 2
Lời giải
a) Đ, b) Đ, c) S, d) S
a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
b) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
c) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).
d) \(S = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} = 9\).
Suy ra \(\ln 9 = 2\ln 3\). Khi đó \({a^2} + {b^2} = {2^2} + {3^2} = 13\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

