PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Cho hàm số \(f\left( x \right) = \frac{{3{x^3} - 2x + 1}}{x}\). Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 1 \right) = 3\). Khi đó \(F\left( 5 \right) = a + \ln b\) với \(a,b \in \mathbb{N}\). Tính tích \(T = ab\).
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Cho hàm số \(f\left( x \right) = \frac{{3{x^3} - 2x + 1}}{x}\). Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 1 \right) = 3\). Khi đó \(F\left( 5 \right) = a + \ln b\) với \(a,b \in \mathbb{N}\). Tính tích \(T = ab\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 595
Ta có \(f\left( x \right) = \frac{{3{x^3} - 2x + 1}}{x} = 3{x^2} - 2 + \frac{1}{x}\).
Có \(F\left( x \right) = \int {\left( {3{x^2} - 2 + \frac{1}{x}} \right)dx} = {x^3} - 2x + \ln \left| x \right| + C\).
Vì \(F\left( 1 \right) = 3\) nên \(F\left( 1 \right) = {1^3} - 2.1 + \ln \left| 1 \right| + C = 3 \Leftrightarrow C = 4\).
Do đó \(F\left( x \right) = {x^3} - 2x + \ln \left| x \right| + 4\).
Suy ra \(F\left( 5 \right) = {5^3} - 2.5 + \ln \left| 5 \right| + 4 = 119 + \ln 5\).
Suy ra \(a = 119;b = 5\). Vậy \(T = ab = 595\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: −367
Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\).
Giả sử M là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.
Suy ra \(M \in d\)\( \Rightarrow M\left( { - 688 + 91t; - 185 + 75t;8} \right)\).
Vì \(OM = 417\) nên \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + 64} = 417\)
\( \Leftrightarrow {\left( { - 688 + 91t} \right)^2} + {\left( { - 185 + 75t} \right)^2} + 64 = {417^2}\)
\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)
\( \Leftrightarrow t = 8\) hoặc \(t = 3\).
Với \(t = 8\) thì \(M\left( {40;415;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 943,4\).
Với \(t = 3\) thì \(M\left( { - 415;40;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 353,8\).
Vì \(353,8 < 943,4\) nên tọa độ điểm M xuất hiện sớm nhất trên ra đa là \(M\left( { - 415;40;8} \right)\).
Suy ra \(a + b + c = - 415 + 40 + 8 = - 367\).
Câu 2
Lời giải
Đáp án đúng là: A
Ta có
Mà \(\int\limits_0^1 {\left( {a{e^x} + b} \right)dx} = e + 2\) nên
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

