Câu hỏi:

19/12/2025 6 Lưu

Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một trận địa pháo phòng không, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất. Trong tập luyện, một vùng mặt phẳng trong tầm hoạt động của pháo được giữ bởi 3 điểm pháo \(A\left( {3;0;0} \right);B\left( {0;1,5;0} \right);C\left( {0;0; - 1,5} \right)\). Một mục tiêu bay từ điểm \(M\left( {5;2;4} \right)\) tới \(N\left( {1;0; - 2} \right)\). Khoảng cách từ điểm pháo \(A\) tới vị trí va chạm của mục tiêu khi tới mặt phẳng là bao nhiêu? (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1,41

Trả lời: 1,41

Phương trình mặt phẳng \(\left( {ABC} \right)\) là: \(\frac{x}{3} + \frac{y}{{1,5}} + \frac{z}{{ - 1,5}} = 1\)\( \Leftrightarrow x + 2y - 2z - 3 = 0\).

Đường thẳng \(MN\) qua \(M\left( {5;2;4} \right)\) và nhận \(\overrightarrow u = - \frac{1}{2}\overrightarrow {MN} = \left( {2;1;3} \right)\) làm vectơ chỉ phương có phương trình là: \(\left\{ \begin{array}{l}x = 5 + 2t\\y = 2 + t\\z = 4 + 3t\end{array} \right.\).

Tọa độ điểm H va chạm của mục tiêu tới mặt phẳng là nghiệm của hệ

x=5+2ty=2+tz=4+3tx+2y2z3=0 x=5+2ty=2+tz=4+3t5+2t+4+2t86t3=0 x=3y=1z=1t=1 . Suy ra H3;1;1

Ta có \(AH = \sqrt {{0^2} + {1^2} + {1^2}} = \sqrt 2 \approx 1,41\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: −367

Phương trình đường thẳng d là: \(\left\{ \begin{array}{l}x = - 688 + 91t\\y = - 185 + 75t\\z = 8\end{array} \right.\).

Giả sử M là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Suy ra \(M \in d\)\( \Rightarrow M\left( { - 688 + 91t; - 185 + 75t;8} \right)\).

\(OM = 417\) nên \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + 64} = 417\)

\( \Leftrightarrow {\left( { - 688 + 91t} \right)^2} + {\left( { - 185 + 75t} \right)^2} + 64 = {417^2}\)

\( \Leftrightarrow 13906{t^2} - 152966t + 333744 = 0\)

\( \Leftrightarrow t = 8\) hoặc \(t = 3\).

Với \(t = 8\) thì \(M\left( {40;415;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 943,4\).

Với \(t = 3\) thì \(M\left( { - 415;40;8} \right)\)\( \Rightarrow AM = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2} + {{\left( {8 - 8} \right)}^2}} \approx 353,8\).

\(353,8 < 943,4\) nên tọa độ điểm M xuất hiện sớm nhất trên ra đa là \(M\left( { - 415;40;8} \right)\).

Suy ra \(a + b + c = - 415 + 40 + 8 = - 367\).

Câu 2

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).
Đúng
Sai
b) Diện tích hình phẳng \(\left( H \right)\)\(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).
Đúng
Sai
c) Diện tích hình phẳng \(\left( H \right)\)\(S = 2\int\limits_{ - 1}^2 {\left( {{x^2} - x - 2} \right)dx} \).
Đúng
Sai
d) Nếu \(\ln S = a\ln b\) (với \(a,b\) là các số nguyên tố) thì \({a^2} + {b^2} = 29\).
Đúng
Sai

Lời giải

a) Đ, b) Đ, c) S, d) S

a) Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị các hàm số \(y = {x^2} - 2x - 1,y = - {x^2} + 3\) và hai đường thẳng \(x = - 1;x = 2\).

b) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} \).

c) \(S = \int\limits_{ - 1}^2 {\left| {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right|dx} = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} \).

d) \(S = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right)dx} = 9\).

Suy ra \(\ln 9 = 2\ln 3\). Khi đó \({a^2} + {b^2} = {2^2} + {3^2} = 13\).

Câu 3

a) Vectơ \(\overrightarrow u = \left( { - 2;2;1} \right)\) là một vectơ chỉ phương của \(\Delta \).
Đúng
Sai
b) Góc giữa hai mặt phẳng \(\left( P \right)\)\(\left( {Oyz} \right)\) bằng \(45^\circ \).
Đúng
Sai
c) Đường thẳng đi qua \(N\left( {2;3; - 4} \right)\) và song song với \(\Delta \) có phương trình là \(\frac{{x - 2}}{{ - 2}} = \frac{{y - 3}}{2} = \frac{{z + 4}}{1}.\)
Đúng
Sai
d) Đường thẳng \(d\) vuông góc \(\Delta \) và tạo với \(\left( P \right)\) một góc \(45^\circ \) có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 2;4} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\ln 2 - 1\).         
B. \(\ln 2 + 3\).        
C. ln2+1.                          
D. \(\ln 2 + 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP