Câu hỏi:

19/12/2025 11 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\left[ { - 2;3} \right]\)\(f'\left( x \right)\) có đồ thị như hình vẽ sau:

Cho hàm số \(y = f\left( x \right)\) (ảnh 1)

Biết \(\int\limits_{ - 2}^1 {f'\left( x \right)dx} = 3\) và diện tích phần gạch sọc trong hình vẽ \(S = \frac{5}{3}\). Giá trị \(f\left( 3 \right) - f\left( { - 2} \right)\) bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1,3

Trả lời: 1,3

Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).

\(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).

Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{{\pi ^2}}}{4}\).                      
B. \(\frac{{{\pi ^2}}}{2}\).                  
C. \(\frac{\pi }{2}\).                          
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là: B

Ta có \(V = \pi \int\limits_0^\pi {{{\sin }^2}xdx} = \left. {\pi \left( {\frac{x}{2} - \frac{{\sin 2x}}{4}} \right)} \right|_0^\pi = \pi .\frac{\pi }{2} = \frac{{{\pi ^2}}}{2}\).

Câu 4

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;0; - 3} \right)\).
Đúng
Sai
b) Góc giữa \(\Delta \)\(\left( P \right)\)\(150^\circ \).
Đúng
Sai
c) Không có điểm chung nào giữa \(\Delta \)\(\left( P \right)\).
Đúng
Sai
d) Hình chiếu của \(M\left( {1;2; - 1} \right)\) lên \(\left( P \right)\)\(N\left( {1;2;1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\smallint {\rm{cos}}2x{\rm{\;d}}x = \frac{1}{2}{\rm{sin}}2x + C\).                   
B. \(\smallint {\rm{cos}}2x{\rm{\;d}}x = {\rm{sin}}2x + C\).    
C. \(\smallint {\rm{cos}}2x{\rm{\;d}}x = - {\rm{sin}}2x + C\).                                                               
D. \(\smallint {\rm{cos}}2x{\rm{\;d}}x = \frac{{ - 1}}{2}{\rm{sin}}2x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{1}{4}\).  
B. \(\frac{{17}}{4}\).       
C. \(\frac{{15}}{4}\).       
D. \(\frac{{19}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP