Hình sau minh họa mặt cắt đứng của một bức tường cũ có dạng hình chữ nhật với một cổng ra vào có dạng hình parabol với các kích thước được cho như trong hình đó. Người ta dự định sơn lại mặt ngoài của bức tường đó. Chi phí để sơn bức tường là 15 000 đồng/1 m2. Tổng chi phí để sơn lại toàn bộ mặt ngoài của bức tường đó sẽ là bao nhiêu nghìn đồng?

Hình sau minh họa mặt cắt đứng của một bức tường cũ có dạng hình chữ nhật với một cổng ra vào có dạng hình parabol với các kích thước được cho như trong hình đó. Người ta dự định sơn lại mặt ngoài của bức tường đó. Chi phí để sơn bức tường là 15 000 đồng/1 m2. Tổng chi phí để sơn lại toàn bộ mặt ngoài của bức tường đó sẽ là bao nhiêu nghìn đồng?

Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 1008
Ta có diện tích bức tường hình chữ nhật là \(10.8 = 80\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chọn hệ trục tọa độ \(Oxy\) sao cho gốc \(O\) trùng với chân bên trái cổng parabol như hình sau:

Giả sử \(P:y = a{x^2} + bx + c\).
Vì \(\left( P \right)\) đi qua \(\left( {0;0} \right),\left( {2;4,8} \right),\left( {4;0} \right)\) nên ta có \(\left\{ \begin{array}{l}4a + 2b + c = 4,8\\16a + 4b + c = 0\\c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{6}{5}\\b = \frac{{24}}{5}\\c = 0\end{array} \right.\).
Do đó \(\left( P \right):y = - \frac{6}{5}{x^2} + \frac{{24}}{5}x\).
Diện tích của chiếc cổng là: \(S = \int\limits_0^4 {\left| { - \frac{6}{5}{x^2} + \frac{{24}}{5}x} \right|dx} = \frac{{64}}{5}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Suy ra diện tích cần sơn là: \(80 - \frac{{64}}{5} = 67,2\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí cần để sơn là: \(67,2.15000 = 100800\) đồng = 1008 nghìn đồng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) Đ, c) S, d) Đ
a) Vận tốc của vật tại thời điểm \(t\) giây là \(v\left( t \right) = \int {a\left( t \right)dt} \).
b) \(v\left( t \right) = \int {\frac{1}{{{t^2} + 3t + 2}}dt} \)\( = \int {\frac{1}{{\left( {t + 1} \right)\left( {t + 2} \right)}}dt} \)\( = \int {\left( {\frac{1}{{t + 1}} - \frac{1}{{t + 2}}} \right)dt} \)\( = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + C\).
Mà \({v_0} = 3\ln 2\left( {{\rm{m/s}}} \right)\) nên \(\ln \frac{1}{2} + C = 3\ln 2 \Rightarrow C = 4\ln 2\).
Do đó \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2\).
c) Có \(v\left( {10} \right) = \ln \frac{{11}}{{12}} + 4\ln 2 \approx 2,69\;{\rm{m/s}}\).
d) \(v\left( t \right) = \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| + 4\ln 2 = 4\ln 2\)\( \Rightarrow \ln \left| {\frac{{t + 1}}{{t + 2}}} \right| = 0\)\( \Rightarrow \left| {\frac{{t + 1}}{{t + 2}}} \right| = 1\)\( \Rightarrow \left[ \begin{array}{l}\frac{{t + 1}}{{t + 2}} = 1\\\frac{{t + 1}}{{t + 2}} = - 1\end{array} \right.\) vô nghiệm.
Do đó không có thời điểm nào vận tốc của vật đạt \(v = 4\ln 2\;\left( {{\rm{m/s}}} \right)\).
Câu 2
Lời giải
Đáp án đúng là: A
\[\int\limits_3^5 {\frac{{{x^2} + x + 1}}{{x + 1}} = } \int\limits_3^5 {\left( {x + \frac{1}{{x + 1}}} \right)dx = } \left. {\left( {\frac{{{x^2}}}{2} + \ln \left| {x + 1} \right|} \right)} \right|_3^5 = \frac{{25}}{2} + \ln 6 - \frac{9}{2} - \ln 4 = 8 + \ln \frac{3}{2}\].
Suy ra \(S = 8 - 2.3 = 2\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.