Hình vẽ bên là đồ thị của hàm số \(f\left( x \right) = a{x^2}\) và \(g\left( x \right) = - ax + b\) (a; b là các số thực), điểm chung thứ nhất có hoành độ bằng 1. Tìm hoành độ của điểm chung thứ hai của hai đồ thị
Quảng cáo
Trả lời:
Hình vẽ cho biết \(a > 0\).
Hoành độ giao điểm của hai đồ thị hàm số là nghiệm của phương trình:
\(a{x^2} = - ax + b \Leftrightarrow a{x^2} + ax - b = 0\;\;\;\left( * \right)\).
Gọi nghiệm còn lại của (*) là \({x_0}\). Theo hệ thức Vi-ét, ta có:
\(1 + {x_0} = - \frac{a}{a} = - 1 \Leftrightarrow {x_0} = - 2\)
Vậy hoành độ của điểm chung thứ hai là \(x = - 2.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = \frac{{\sqrt 7 + 1}}{{3 - 2\sqrt 2 }} - \frac{{2\sqrt {14} }}{{\sqrt 2 - 1}} + \sqrt 7 - 2\sqrt 2 .\)
\( = \;\frac{{\sqrt 7 + 1}}{{3 - 2\sqrt 2 }} - \frac{{2\sqrt {14} .\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 - 1} \right)}} + \frac{{\left( {\sqrt 7 - 2\sqrt 2 } \right)\left( {3 - 2\sqrt 2 } \right)}}{{(3 - 2\sqrt {2)} }}\)
\( = \;\frac{{\sqrt 7 + 1}}{{3 - 2\sqrt 2 }} - \frac{{2\sqrt {14} .\sqrt 2 - 2\sqrt {14} }}{{3 - 2\sqrt 2 }} + \frac{{3\sqrt 7 - 6\sqrt 2 - 2\sqrt {14} + 8}}{{3 - 2\sqrt 2 }}\)
\( = \;\frac{{9 - 6\sqrt 2 }}{{3 - 2\sqrt 2 }} = \frac{{3\left( {3 - 3\sqrt 2 } \right)}}{{3 - 3\sqrt 2 }}\) = 3.
Lời giải
\(\left\{ {\begin{array}{*{20}{c}}{x + \sqrt 3 y = 6 - 2\sqrt 3 \;\;\left( 1 \right)}\\{x + y = 2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 \right)}\end{array}} \right.\)
Trừ (1) và (2) theo vế ta được:
\(\left( {\sqrt 3 - 1} \right)y = 4 - 2\sqrt 3 = {\left( {\sqrt 3 - 1} \right)^2} \Rightarrow y = \sqrt 3 - 1\)
Thay vào (2) được \(x = 2 - y = 2 - \left( {\sqrt 3 - 1} \right) = 3 - \sqrt 3 .\)
Vậy hệ đã cho có nghiệm \(\left( {x;y} \right) = \left( {3 - \sqrt 3 ;\;\sqrt 3 - 1} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.