Giải hệ phương trình : \[\left\{ \begin{array}{l}x(y + 2) + 2 = 5y\\{(xy - 1)^2} + 3(1 - {y^2}) = 0\end{array} \right.\]
Quảng cáo
Trả lời:
|
Ta có \[\left\{ \begin{array}{l}x(y + 2) + 2 = 5y\\{(xy - 1)^2} + 3(1 - {y^2}) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy + 2x + 2 = 5y\\{x^2}{y^2} - 2xy + 4 = 3{y^2}\end{array} \right.\] |
|
+ Với \[y = 0\] thì hệ vô nghiệm + Với \[y \ne 0\] hệ đã cho trở thành \[\left\{ \begin{array}{l}x + \frac{{2x}}{y} + \frac{2}{y} = 5\\{x^2} - \frac{{2x}}{y} + \frac{4}{{{y^2}}} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \frac{2}{y} + 2\frac{x}{y} = 5\\{\left( {x + \frac{2}{y}} \right)^2} - 6\frac{x}{y} = 3\end{array} \right.\] Đặt : \[\left\{ \begin{array}{l}a = x + \frac{2}{y}\\b = \frac{x}{y}\end{array} \right.\] Khi đó, hệ trở thành |
|
Từ (1) ta có: Thay (*) vào (2) ta được \[4{b^2} - 26b + 22 = 0 \Leftrightarrow \left[ \begin{array}{l}b = 1\\b = \frac{{11}}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 1\\a = 3\end{array} \right.\] hoặc \[\left\{ \begin{array}{l}b = \frac{{11}}{2}\\a = - 6\end{array} \right.\] + Với \[\left\{ \begin{array}{l}a = 3\\b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \frac{2}{y} = 3\\\frac{x}{y} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \frac{2}{x} = 3\\x = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 3x + 2 = 0\\x = y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\end{array} \right.\] |
|
+ Với \[\left\{ \begin{array}{l}a = - 6\\b = \frac{{11}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \frac{2}{y} = - 6\\\frac{x}{y} = \frac{{11}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{11y}}{2} + \frac{2}{y} = - 6\\x = \frac{{11y}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}11{y^2} + 12y + 4 = 0\,\,\,\,\,(3){\rm{ }}\\x = \frac{{11y}}{2}\end{array} \right.\] Phương trình (3) vô nghiệm nên hệ vô nghiệm. Vậy \[(1;1),\,\,(2;2)\]là nghiệm của hệ phương trình. ( Nếu học sinh quên xét điều kiện nhưng giải đúng hoàn toàn thì trừ 0,25 điểm toàn bài). |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
Đến ngày 02/09/2023 số tiền có được trong tài khoản tiết kiệm là: \(2.005.000\left( {1 + 0,005} \right) + 1.000.000 = 3.015.025\)(VNĐ) |
|
Đến ngày 02/10/2023 số tiền có được trong tài khoản tiết kiệm là: \(1.000.000\left[ {1 + 1,005 + 1,{{005}^2} + 1,{{005}^3}} \right] \simeq 4.030.100\)(VNĐ) |
|
Sau kỳ gởi tháng thứ \(n\) số tiền được tính theo công thức \({T_n} = 1.000.000\left[ {1 + 1,005 + 1,{{005}^2} + \cdots + 1,{{005}^n}} \right]\) |
|
Vào ngày 02/7/2026 bạn Tuấn đã tiết kiệm được 3 năm (36 tháng). \({T_{36}} = 1.000.000\left[ {1 + 1,005 + 1,{{005}^2} + \cdots + 1,{{005}^{36}}} \right]\) |
|
Suy ra \(1,005{T_{36}} = 1.000.000\left[ {1,005 + 1,{{005}^2} + \cdots + 1,{{005}^{36}} + 1,{{005}^{37}}} \right]\) |
|
\[1,005{T_{36}} - {T_{36}} = 1.000.000\left[ {1,{{005}^{37}} - 1} \right]\] \[ \Rightarrow {T_{36}} = \frac{{1.000.000\left[ {1,{{005}^{37}} - 1} \right]}}{{0,005}} \approx 40.532.785\,\](VNĐ) |
Lời giải
|
Xét \(\Delta MAC\) và \(\Delta MDA\) có \(\widehat {AMD}\) chung |
|
\(\widehat {MAC} = \widehat {MDA}\) (Cùng chắn ) |
|
Suy ra (g-g) |
|
\( \Rightarrow \frac{{MA}}{{MD}} = \frac{{MC}}{{MA}} \Rightarrow M{A^2} = MC.MD\) |
|
Ta có: \(\widehat {OAM} = {90^0}\)(tính chất của tiếp tuyến) \(MA = MB\)(tính chất hai tiếp tuyến cắt nhau) và \(OA = OB\) \( \Rightarrow OM\)là trung trực \(AB\) hay \(OM \bot AB\) tại \(H\) \( \Rightarrow A{M^2} = MH.MO\)(hệ thức lượng trong tam giác vuông) |
|
\( \Rightarrow MH.MO = MC.MD\,\left( { = M{A^2}} \right)\) |
|
\(\frac{{MH}}{{MC}} = \frac{{MD}}{{MO}}\) và \(\widehat {DMO}\) chung (c-g-c) |
|
\( \Rightarrow \widehat {MDH} = \widehat {MOC}\) (hai góc tương ứng) hay \(\widehat {CDH} = \widehat {HOC}\) \( \Rightarrow \) tứ giác \(DOHC\) nội tiếp đường tròn |
|
Dựng đường cao \(DK\) của \(\Delta MAD\). Khi đó \({S_{\Delta MAD}} = \frac{1}{2}MA.DK\) |
|
\({S_{\Delta MAD}} = \frac{1}{2}MA.DK\) đạt giá trị lớn nhất khi và chỉ khi \(DK\)lớn nhất (\(MA\) không đổi) |
|
Gọi \(E\) là điểm đối xứng với \(A\) qua \(O\). Qua \(D\) dựng đường thẳng song song \(MA\) cắt \(AE\) tại \(F \Rightarrow DK = AF\) |
|
Khi \(D\) di chuyển trên cung lớn \(AB\) thì \(F\) di chuyển trên đường kính \(AE\). Suy ra \(AF\) lớn nhất khi \(AF\) là đường kính hay \(D \equiv F \equiv E\) |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.