Câu hỏi:

22/12/2025 52 Lưu

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

A. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\). 
B. \(D = \left[ { - 1;3} \right]\).
C. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\).
D. \(D = \left( { - 1;3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\) xác định khi \({x^2} - 2x - 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x <  - 1\\x > 3\end{array} \right.\).

Do đó tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi biến cố A: “Học sinh đó giỏi Toán”.

Biến cố B: “Học sinh đó giỏi Văn”.

Biến cố AB: “Học sinh đó giỏi cả Văn và Toán”.

Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó giỏi một trong hai môn Toán hoặc Văn”.

Ta có \(P\left( A \right) = \frac{{16}}{{40}} = \frac{2}{5};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{12}}{{40}} = \frac{3}{{10}}\).

Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{2}{5} + \frac{1}{2} - \frac{3}{{10}} = \frac{6}{{10}}\).

Lời giải

Hướng dẫn giải

Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.

Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.

Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).

Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[f'({x_0})\]       
B. \[f({x_0})\].       
C. \[ - f'({x_0})\].  
D. \[ - f({x_0})\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP