Để thành lập đội tuyển tham dự cuộc thi “ Sáng tạo Robot Quảng Ngãi lần thứ nhất”. Giáo viên chủ nhiệm lớp 11A1 cần chọn ngẫu nhiên ra một học sinh để tham gia cho đội tuyển của trường. Xét hai biến cố A: “Học sinh đó học giỏi môn Toán”, biến cố B: “ Học sinh đó học giỏi môn Tin”. Khi đó nội dung của biến cố \(A \cup B\)là
A. Học sinh đó học giỏi môn Toán hoặc học giỏi môn Tin.
B. Học sinh đó học giỏi cả hai môn Toán và Tin.
C. Học sinh đó học giỏi môn Toán và không giỏi môn Tin.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
\(A \cup B\): “Học sinh đó học giỏi môn Toán hoặc học giỏi môn Tin”.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(H\) là trung điểm \(AD\), ta có \(SH \bot AD\), \(\left( {SAD} \right) \bot \left( {ABCD} \right),\,\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\) nên \(SH \bot \left( {ABCD} \right)\) và \(SH = a\sqrt 3 \).
Vì \(SH \bot \left( {ABCD} \right)\)\( \Rightarrow SH \bot BC\)
Gọi \(M\) là trung điểm của \(BC\), ta có \(BC \bot HM,\,BC \bot SH \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).
Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy là \(\widehat {SMH} = 30^\circ \).
Xét \(\Delta SHM\) vuông tại \(H,\) có \[\tan 30^\circ = \frac{{SH}}{{HM}} \Rightarrow HM = \frac{{SH}}{{\tan 30^\circ }} = 3a\].
Khi đó: \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}a\sqrt 3 .2a.3a = 2\sqrt 3 {a^3}\).
Lời giải
Hướng dẫn giải
Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.
Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.
Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).
Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
