Cho hàm số \(y = f(x)\) có đạo hàm thỏa mãn \[f'\left( 6 \right) = 2.\] Giá trị của biểu thức \[\mathop {\lim }\limits_{x \to 6} \frac{{f\left( x \right) - f\left( 6 \right)}}{{x - 6}}\] bằng
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Hàm số \(y = f\left( x \right)\) có tập xác định là \(D\) và \({x_0} \in D\). Nếu tồn tại giới hạn (hữu hạn) \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn gọi là đạo hàm của hàm số tại \({x_0}\)
Vậy kết quả của biểu thức \(\mathop {\lim }\limits_{x \to 6} \frac{{f\left( x \right) - f\left( 6 \right)}}{{x - 6}} = f'\left( 6 \right) = 2.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(H\) là trung điểm \(AD\), ta có \(SH \bot AD\), \(\left( {SAD} \right) \bot \left( {ABCD} \right),\,\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\) nên \(SH \bot \left( {ABCD} \right)\) và \(SH = a\sqrt 3 \).
Vì \(SH \bot \left( {ABCD} \right)\)\( \Rightarrow SH \bot BC\)
Gọi \(M\) là trung điểm của \(BC\), ta có \(BC \bot HM,\,BC \bot SH \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).
Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy là \(\widehat {SMH} = 30^\circ \).
Xét \(\Delta SHM\) vuông tại \(H,\) có \[\tan 30^\circ = \frac{{SH}}{{HM}} \Rightarrow HM = \frac{{SH}}{{\tan 30^\circ }} = 3a\].
Khi đó: \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}a\sqrt 3 .2a.3a = 2\sqrt 3 {a^3}\).
Lời giải
Hướng dẫn giải
Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.
Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.
Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).
Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
