Câu hỏi:

22/12/2025 61 Lưu

III. Hướng dẫn giải tự luận

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, mặt bên \(SAD\) là tam giác đều cạnh \(2a\) và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, mặt phẳng \(\left( {SBC} \right)\) tạo với mặt phẳng đáy một góc \(30^\circ \). Tính thể tích khối chóp \(S.ABCD\).  

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy, mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 30 độ. Tính thể tích khối chóp S.ABCD. (ảnh 1)

Gọi \(H\) là trung điểm \(AD\), ta có \(SH \bot AD\), \(\left( {SAD} \right) \bot \left( {ABCD} \right),\,\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\) nên \(SH \bot \left( {ABCD} \right)\) và \(SH = a\sqrt 3 \).

Vì \(SH \bot \left( {ABCD} \right)\)\( \Rightarrow SH \bot BC\)

Gọi \(M\) là trung điểm của \(BC\), ta có \(BC \bot HM,\,BC \bot SH \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).

Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy là \(\widehat {SMH} = 30^\circ \).

Xét \(\Delta SHM\) vuông tại \(H,\) có \[\tan 30^\circ  = \frac{{SH}}{{HM}} \Rightarrow HM = \frac{{SH}}{{\tan 30^\circ }} = 3a\].

Khi đó: \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}a\sqrt 3 .2a.3a = 2\sqrt 3 {a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Gọi biến cố A: “Học sinh đó giỏi Toán”.

Biến cố B: “Học sinh đó giỏi Văn”.

Biến cố AB: “Học sinh đó giỏi cả Văn và Toán”.

Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó giỏi một trong hai môn Toán hoặc Văn”.

Ta có \(P\left( A \right) = \frac{{16}}{{40}} = \frac{2}{5};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{12}}{{40}} = \frac{3}{{10}}\).

Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{2}{5} + \frac{1}{2} - \frac{3}{{10}} = \frac{6}{{10}}\).

Lời giải

Hướng dẫn giải

Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.

Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.

Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).

Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[f'({x_0})\]       
B. \[f({x_0})\].       
C. \[ - f'({x_0})\].  
D. \[ - f({x_0})\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP